清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:352: 67-75 被引量:31
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koubi发布了新的文献求助10
2秒前
sdfg完成签到 ,获得积分10
4秒前
8秒前
14秒前
19秒前
23秒前
喜悦的唇彩完成签到,获得积分10
24秒前
27秒前
Will完成签到,获得积分10
30秒前
as完成签到 ,获得积分10
31秒前
38秒前
无辜的行云完成签到 ,获得积分0
42秒前
Stella完成签到,获得积分10
45秒前
量子星尘发布了新的文献求助10
55秒前
1分钟前
samchen完成签到,获得积分10
1分钟前
1分钟前
harden9159完成签到,获得积分10
1分钟前
1分钟前
zdz发布了新的文献求助30
1分钟前
yipmyonphu应助科研通管家采纳,获得10
1分钟前
我是笨蛋完成签到 ,获得积分10
1分钟前
斯文败类应助zdz采纳,获得30
1分钟前
xiaowangwang完成签到 ,获得积分10
2分钟前
xiaoxiaohai完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
NINI完成签到 ,获得积分10
2分钟前
2分钟前
小鱼女侠完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Faust发布了新的文献求助10
3分钟前
3分钟前
ala发布了新的文献求助10
3分钟前
一颗红葡萄完成签到 ,获得积分10
3分钟前
3分钟前
王磊完成签到 ,获得积分10
3分钟前
wjswift完成签到,获得积分10
3分钟前
研友_VZG7GZ应助thronn采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583322
关于积分的说明 14389186
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472973
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432652