Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:352: 67-75 被引量:12
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aurevoir完成签到,获得积分10
刚刚
望向天空的鱼完成签到 ,获得积分10
刚刚
Hello应助lianliyou采纳,获得10
1秒前
刘晴晴完成签到,获得积分20
1秒前
乔苏惠娜完成签到,获得积分10
1秒前
2秒前
Alan完成签到 ,获得积分10
3秒前
4秒前
4秒前
scott_zip完成签到 ,获得积分10
4秒前
村口科研小伙完成签到,获得积分10
6秒前
俭朴的世界完成签到 ,获得积分10
6秒前
tuzi完成签到,获得积分0
7秒前
Ruuo616完成签到 ,获得积分10
7秒前
沟通亿心完成签到,获得积分10
7秒前
JY发布了新的文献求助10
7秒前
LILI完成签到,获得积分10
7秒前
淀粉肠完成签到 ,获得积分10
8秒前
我是老大应助sci大户采纳,获得10
12秒前
jin完成签到,获得积分10
13秒前
王婷完成签到,获得积分10
13秒前
jinyu完成签到,获得积分10
13秒前
13秒前
yy完成签到,获得积分10
14秒前
ying完成签到,获得积分10
16秒前
ztt发布了新的文献求助10
17秒前
19秒前
你帅你有理完成签到,获得积分10
20秒前
旺仔完成签到 ,获得积分10
21秒前
华仔应助陶醉的笑槐采纳,获得10
24秒前
24秒前
25秒前
25秒前
25秒前
25秒前
25秒前
LSS完成签到,获得积分10
26秒前
28秒前
luqian完成签到,获得积分10
29秒前
研友_ZegMrL完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491139
关于积分的说明 11059274
捐赠科研通 3222093
什么是DOI,文献DOI怎么找? 1780863
邀请新用户注册赠送积分活动 865877
科研通“疑难数据库(出版商)”最低求助积分说明 800083