Prediction of non-suicidal self-injury in adolescents at the family level using regression methods and machine learning

逻辑回归 随机森林 布里氏评分 家族史 心理学 接收机工作特性 毒物控制 临床心理学 机器学习 计算机科学 医学 环境卫生 放射科
作者
Si Chen Zhou,Zhaohe Zhou,Qi Tang,Ping Yu,Huijing Zou,Qian Liu,Xiao Qin Wang,Jianmei Jiang,Yang Zhou,Lianzhong Liu,Bing Xiang Yang,Dan Luo
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:352: 67-75 被引量:10
标识
DOI:10.1016/j.jad.2024.02.039
摘要

Adolescent non-suicidal self-injury (NSSI) is a major public health issue. Family factors are significantly associated with NSSI in adolescents, while studies on forecasting NSSI at the family level are still limited. In addition to regression methods, machine learning (ML) techniques have been recommended to improve the accuracy of family-level risk prediction for NSSI. Using a dataset of 7967 students and their primary caregivers from a cross-sectional study, logistic regression model and random forest model were used to test the forecasting accuracy of NSSI predictions at the family level. Cross-validation was used to assess model prediction performance, including the area under the receiver operator curve (AUC), precision, Brier score, accuracy, sensitivity, specificity, positive predictive value and negative predictive value. The top three important family-related predictors within the random forest algorithm included family function (importance:42.66), family conflict (importance:42.18), and parental depression (importance:27.21). The most significant family-related risk predictors and protective predictors identified by the logistic regression model were family history of mental illness (OR:2.25) and help-seeking behaviors of mental distress from parents (OR:0.65), respectively. The AUCs of the two models, logistic regression and random forest, were 0.852 and 0.835, respectively. The key limitation is that this cross-sectional survey only enabled the authors to examine predictors that were considered to be proximal rather than distal. These findings highlight the significance of family-related factors in forecasting NSSI in adolescents. Combining both conventional statistical methods and ML methods to improve risk assessment of NSSI at the family level deserves attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可爱的函函应助荼蘼如雪采纳,获得10
3秒前
3秒前
7秒前
冰魂应助KKK研采纳,获得10
7秒前
10秒前
大模型应助狂飙的小蜗牛采纳,获得10
10秒前
11秒前
Lichen完成签到,获得积分10
11秒前
胖虎不胖发布了新的文献求助30
15秒前
DD完成签到,获得积分10
15秒前
渝州人完成签到,获得积分10
16秒前
16秒前
粉色娇嫩发布了新的文献求助10
16秒前
冰魂应助KKK研采纳,获得10
17秒前
科研通AI5应助李浩采纳,获得10
19秒前
荼蘼如雪发布了新的文献求助10
22秒前
Lorne完成签到,获得积分20
30秒前
娟娟完成签到 ,获得积分10
30秒前
jzhumath发布了新的文献求助30
33秒前
33秒前
科研通AI5应助goldNAN采纳,获得10
33秒前
34秒前
一颗煤炭完成签到 ,获得积分10
36秒前
37秒前
孤独尔安完成签到 ,获得积分10
37秒前
pluto应助云泥采纳,获得20
38秒前
38秒前
40秒前
李爱国应助sxd采纳,获得10
43秒前
科研通AI2S应助松栗奶芙hh采纳,获得10
46秒前
红星路吃饼子的派大星完成签到 ,获得积分10
46秒前
快乐非笑完成签到,获得积分10
50秒前
53秒前
万万想到了完成签到,获得积分10
53秒前
ttracc完成签到 ,获得积分10
54秒前
54秒前
56秒前
57秒前
sxd发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781926
求助须知:如何正确求助?哪些是违规求助? 3327474
关于积分的说明 10231495
捐赠科研通 3042382
什么是DOI,文献DOI怎么找? 1669975
邀请新用户注册赠送积分活动 799461
科研通“疑难数据库(出版商)”最低求助积分说明 758822