Multiobjective multihydropower reservoir operation optimization with transformer-based deep reinforcement learning

强化学习 计算机科学 变压器 背景(考古学) 数学优化 人工智能 电压 工程类 数学 电气工程 古生物学 生物
作者
Rixin Wu,Ran Wang,Jie Hao,Qiang Wu,Ping Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:632: 130904-130904 被引量:6
标识
DOI:10.1016/j.jhydrol.2024.130904
摘要

The paper introduces a transformer-based deep reinforcement learning (T-DRL) approach designed to address the multiobjective multihydropower reservoir operation optimization (MMROO) problem. Unlike existing literature that primarily focuses on maximizing power generation from individual reservoirs, the MMROO model in this study considers the broader context of multiple reservoirs, encompassing total power generation, ecological protection, and residential area water supply. The computational challenges posed by the numerous constraints and nonlinearities of multiple reservoirs render conventional multiobjective evolutionary algorithms both expensive and lacking in generalization capabilities for solving the MMROO problem. To overcome these challenges, the paper proposes a T-DRL approach that leverages the multihead attention mechanism within the encoder module to adeptly extract complex information from reservoirs and residential areas. The two-stage encoder effectively processes diverse information separately. The multireservoir network of the decoder then generates optimal decisions based on contextual information. The case study focusing on Lake Mead and Lake Powell in the Colorado River Basin demonstrates the efficacy of the T-DRL approach, producing operation strategies that outperform a state-of-the-art method. Specifically, the proposed approach yields a 10.11% increase in electricity generation, a 39.69% reduction in amended annual proportional flow deviation, and a 4.10% rise in water supply revenue. Overall, the T-DRL approach emerges as an effective method for the multiobjective operation of multihydropower reservoir systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Megan完成签到,获得积分10
1秒前
科研通AI5应助清脆的冰露采纳,获得30
2秒前
坦率的果汁完成签到,获得积分20
2秒前
卡萨卡萨完成签到,获得积分10
2秒前
i7完成签到,获得积分10
2秒前
yekindar发布了新的文献求助10
2秒前
2秒前
4秒前
ziyuwang发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
8秒前
辞忧发布了新的文献求助10
8秒前
yekindar完成签到,获得积分10
8秒前
大个应助小学生熊大采纳,获得10
9秒前
买了束花完成签到,获得积分10
9秒前
充电宝应助WYY采纳,获得10
9秒前
9秒前
10秒前
QWERT完成签到,获得积分10
10秒前
NikoOO完成签到,获得积分10
10秒前
石翎完成签到,获得积分10
11秒前
11秒前
11秒前
KjLumos发布了新的文献求助30
12秒前
科研通AI5应助小岳同学采纳,获得10
12秒前
13秒前
13秒前
SYLH应助欢喜雪瑶采纳,获得10
13秒前
ding应助林中白狼采纳,获得10
13秒前
Dr_an发布了新的文献求助10
13秒前
斌爽3发布了新的文献求助30
13秒前
14秒前
轻松的老鼠完成签到,获得积分10
14秒前
感动澜完成签到,获得积分10
14秒前
14秒前
李健应助ZLY采纳,获得10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809673
求助须知:如何正确求助?哪些是违规求助? 3354199
关于积分的说明 10369497
捐赠科研通 3070479
什么是DOI,文献DOI怎么找? 1686340
邀请新用户注册赠送积分活动 810900
科研通“疑难数据库(出版商)”最低求助积分说明 766433