MVI-Wise GAN: Synthetic MRI to Improve Microvascular Invasion Prediction in Hepatocellular Carcinoma

鉴别器 计算机科学 卷积神经网络 肝细胞癌 背景(考古学) 人工智能 特征(语言学) 深度学习 人工神经网络 残余物 模式识别(心理学) 机器学习 探测器 医学 算法 癌症研究 电信 古生物学 语言学 哲学 生物
作者
Jing Liu,Yulin Yang,Yang Ai,Titinunt Kitrungrotsakul,Fang Wang,Lanfen Lin,Ruofeng Tong,Yen‐Wei Chen,Jingsong Li
标识
DOI:10.1109/embc40787.2023.10340869
摘要

MRI is crucial for the diagnosis of HCC patients, especially when combined with CT images for MVI prediction, richer complementary information can be learned. Many studies have shown that whether hepatocellular carcinoma is accompanied by vascular invasion can be evidenced by imaging examinations such as CT or MR, so they can be used as a multimodal joint prediction to improve the prediction accuracy of MVI. However, it is high-risk, time-consuming and expensive in current clinical diagnosis due to the use of gadolinium-based contrast agent (CA) injection. If MRI could be synthesized without CA injection, there is no doubt that it would greatly optimize the diagnosis. Based on this, this paper proposes a high-quality image synthesis network, MVI-Wise GAN, that can be used to improve the prediction of microvascular invasion in HCC. It starts from the underlying imaging perspective, introduces K-space and feature-level constraints, and combines three related networks (an attention-aware generator, a convolutional neural network-based discriminator and a region-based convolutional neural network detector) Together, precise tumor region detection by synthetic tumor-specific MRI. Accurate MRI synthesis is achieved through backpropagation, the feature representation and context learning of HCC MVI are enhanced, and the performance of loss convergence is improved through residual learning. The model was tested on a dataset of 256 subjects from Run Run Shaw Hospital of Zhejiang University. Experimental results and quantitative evaluation show that MVI-Wise GAN achieves high-quality MRI synthesis with a tumor detection accuracy of 92.3%, which is helpful for the clinical diagnosis of liver tumor MVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷家小区发布了新的文献求助10
刚刚
跳跃尔蓝完成签到 ,获得积分20
1秒前
3秒前
5秒前
7秒前
8秒前
快船总冠军完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
cwy发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助1234采纳,获得10
10秒前
10秒前
Dream发布了新的文献求助10
11秒前
光亮青柏完成签到 ,获得积分10
12秒前
nini发布了新的文献求助10
12秒前
cwy发布了新的文献求助10
13秒前
wsj发布了新的文献求助10
13秒前
木子发布了新的文献求助10
14秒前
吴zzzz发布了新的文献求助10
15秒前
阔达的柠檬完成签到 ,获得积分20
18秒前
高高兴兴完成签到,获得积分10
18秒前
俭朴的语琴完成签到,获得积分20
19秒前
冰魂应助lizhiqian2024采纳,获得10
23秒前
云yun发布了新的文献求助10
26秒前
kiki完成签到 ,获得积分10
26秒前
27秒前
kls完成签到,获得积分10
27秒前
General完成签到 ,获得积分10
29秒前
29秒前
小蘑菇应助吴zzzz采纳,获得10
30秒前
王倩完成签到 ,获得积分10
30秒前
科研通AI5应助程雯慧采纳,获得10
31秒前
章军发布了新的文献求助10
31秒前
kitwang发布了新的文献求助30
32秒前
33秒前
华仔应助YHDing采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781798
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230805
捐赠科研通 3042262
什么是DOI,文献DOI怎么找? 1669926
邀请新用户注册赠送积分活动 799434
科研通“疑难数据库(出版商)”最低求助积分说明 758804