Deep Learning-Based Predictive Model for Revascularization of Chronic Total Occlusions on Angiographic Imaging

医学 血运重建 传统PCI 经皮冠状动脉介入治疗 心绞痛 放射科 血管造影 心脏病学 内科学 心肌梗塞
作者
Sara Pérez-Martínez,Agustín Fernández‐Cisnal,Manuel Pérez-Pelegrí,Sergio García‐Blas,Gema Miñana,Ernesto Valero,Juan Sanchís,David Moratal
标识
DOI:10.1109/embc40787.2023.10340539
摘要

Revascularization of chronic total occlusions (CTO) is currently one of the most complex procedures in percutaneous coronary intervention (PCI), requiring the use of specific devices and a high level of experience to obtain good results. Once the clinical indication for extensive ischemia or angina uncontrolled with medical treatment has been established, the decision to perform coronary intervention is not simple, since this procedure has a higher rate of complications than non-PCI percutaneous intervention, higher ionizing radiation doses and a lower success rate. However, CTO revascularization has been shown to be helpful in symptomatic improvement of angina, reduction of ischemic burden, or improvement of ejection fraction. The aim of this work is to determine whether a model developed using deep learning techniques, and trained with angiography images, can better predict the likelihood of a successful revascularization procedure for a patient with a chronic total occlusion (CTO) lesion in their coronary artery (measured as procedure success and the duration of time during which X-ray imaging technology is used to perform a medical procedure) than the scales traditionally used. As a preliminary approach, patients with right coronary artery CTO will be included since they present standard angiographic projections that are performed in all patients and present less technical variability (duration, projection angle, image similarity) among them.The ultimate objective is to develop a predictive model to help the clinician in the decision to intervene and to analyze the performance in terms of predicting the success of the technique for the revascularization of chronic occlusions.Clinical Relevance— The development of a deep learning model based on the angiography images could potentially overcome the gold standard and help interventional cardiologists in the treatment decision for percutaneous coronary intervention, maximizing the success rate of coronary intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
liuHX完成签到,获得积分10
7秒前
zhangxin完成签到,获得积分10
7秒前
能干的谷蕊完成签到 ,获得积分10
8秒前
Hardskills发布了新的文献求助30
8秒前
8秒前
情怀应助科研小民工采纳,获得10
9秒前
11秒前
qqqqqqq发布了新的文献求助10
12秒前
bkagyin应助喜悦香萱采纳,获得10
12秒前
16秒前
XinyuLu完成签到,获得积分10
17秒前
kitten完成签到,获得积分20
19秒前
大猪完成签到 ,获得积分10
20秒前
araul完成签到,获得积分10
22秒前
qqqqqqq完成签到,获得积分10
22秒前
深情安青应助yu采纳,获得10
25秒前
暴躁汉堡完成签到,获得积分10
29秒前
苏桑焉完成签到 ,获得积分10
30秒前
土豆淀粉完成签到 ,获得积分10
30秒前
RAmos_1982完成签到,获得积分10
35秒前
36秒前
自觉远山完成签到 ,获得积分10
37秒前
细心的如天完成签到 ,获得积分10
37秒前
天天快乐应助yu采纳,获得10
38秒前
天天下雨完成签到 ,获得积分10
39秒前
科研通AI5应助shuangcheng采纳,获得10
41秒前
kitten发布了新的文献求助30
42秒前
养一只鱼完成签到 ,获得积分10
42秒前
Zhangtao完成签到,获得积分10
43秒前
afeifei完成签到,获得积分10
43秒前
tomorrow完成签到 ,获得积分10
44秒前
xingl完成签到,获得积分10
46秒前
Nicole完成签到 ,获得积分10
46秒前
nater2ver完成签到,获得积分10
46秒前
这课题真顺利完成签到,获得积分10
46秒前
满天星辰独览完成签到 ,获得积分10
48秒前
rrrick完成签到,获得积分10
49秒前
CUN完成签到,获得积分10
51秒前
shenwei完成签到 ,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780920
求助须知:如何正确求助?哪些是违规求助? 3326387
关于积分的说明 10226967
捐赠科研通 3041589
什么是DOI,文献DOI怎么找? 1669510
邀请新用户注册赠送积分活动 799081
科研通“疑难数据库(出版商)”最低求助积分说明 758734