Survival Prediction in Second Primary Breast Cancer Patients with Machine Learning: An Analysis of SEER Database

医学 比例危险模型 布里氏评分 单变量 乳腺癌 多元统计 接收机工作特性 回归分析 生存分析 特征选择 单变量分析 多元分析 癌症 内科学 统计 人工智能 计算机科学 数学
作者
Yafei Wu,Yaheng Zhang,Siyu Duan,Chenming Gu,Chongtao Wei,Ya Fang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:254: 108310-108310 被引量:2
标识
DOI:10.1016/j.cmpb.2024.108310
摘要

Studies have found that first primary cancer (FPC) survivors are at high risk of developing second primary breast cancer (SPBC). However, there is a lack of prognostic studies specifically focusing on patients with SPBC. This retrospective study used data from Surveillance, Epidemiology and End Results Program. We selected female FPC survivors diagnosed with SPBC from 12 registries (from January 1998 to December 2018) to construct prognostic models. Meanwhile, SPBC patients selected from another five registries (from January 2010 to December 2018) were used as the validation set to test the model's generalization ability. Four machine learning models and a Cox proportional hazards regression (CoxPH) were constructed to predict the overall survival of SPBC patients. Univariate and multivariate Cox regression analyses were used for feature selection. Model performance was assessed using time-dependent area under the ROC curve (t-AUC) and integrated Brier score (iBrier). A total of 10,321 female FPC survivors with SPBC (mean age [SD]: 66.03 [11.17]) were included for model construction. These patients were randomly split into a training set (mean age [SD]: 65.98 [11.15]) and a test set (mean age [SD]: 66.15 [11.23]) with a ratio of 7:3. In validation set, a total of 3,638 SPBC patients (mean age [SD]: 66.28 [10.68]) were finally enrolled. Sixteen features were selected for model construction through univariate and multivariable Cox regression analyses. Among five models, random survival forest model showed excellent performance with a t-AUC of 0.805 (95%CI: 0.803 - 0.807) and an iBrier of 0.123 (95%CI: 0.122 - 0.124) on testing set, as well as a t-AUC of 0.803 (95%CI: 0.801 - 0.807) and an iBrier of 0.098 (95%CI: 0.096 - 0.103) on validation set. Through feature importance ranking, the top one and other top five key predictive features of the random survival forest model were identified, namely age, stage, regional nodes positive, latency, radiation, and surgery. The random survival forest model outperformed CoxPH and other machine learning models in predicting the overall survival of patients with SPBC, which was helpful for the monitoring of high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碎冰蓝完成签到,获得积分10
刚刚
5秒前
北冰洋的夜晚An完成签到,获得积分20
6秒前
slin_sjtu完成签到,获得积分0
7秒前
7秒前
万能图书馆应助sxd采纳,获得10
8秒前
fangyifang发布了新的文献求助10
8秒前
Enoch发布了新的文献求助10
8秒前
XS_QI完成签到 ,获得积分10
10秒前
你终硕完成签到 ,获得积分10
10秒前
Autin完成签到,获得积分0
11秒前
vanco完成签到,获得积分10
12秒前
星辰大海应助weddcf采纳,获得10
12秒前
目眩发布了新的文献求助10
12秒前
跳跃的语柔完成签到,获得积分10
13秒前
zero桥完成签到,获得积分10
13秒前
14秒前
15秒前
CodeCraft应助派大星采纳,获得10
17秒前
sxd发布了新的文献求助10
18秒前
18秒前
weddcf发布了新的文献求助10
20秒前
for_abSCI完成签到,获得积分10
20秒前
潘啊潘完成签到 ,获得积分10
22秒前
23秒前
科研通AI5应助qiulong采纳,获得10
27秒前
顺心的夜南完成签到,获得积分10
28秒前
网上飞完成签到,获得积分10
31秒前
强壮的美女完成签到 ,获得积分10
32秒前
lee完成签到 ,获得积分10
33秒前
记得补充水分我的朋友完成签到 ,获得积分10
33秒前
高高的幻莲完成签到,获得积分10
33秒前
李健的小迷弟应助Be-a rogue采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
脑洞疼应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
寒冷诗霜应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
xzn1123应助科研通管家采纳,获得10
39秒前
爆米花应助科研通管家采纳,获得10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776116
求助须知:如何正确求助?哪些是违规求助? 3321700
关于积分的说明 10206716
捐赠科研通 3036792
什么是DOI,文献DOI怎么找? 1666450
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841