Self-Supervised-Enabled Open-Set Cross-Domain Fault Diagnosis Method for Rotating Machinery

断层(地质) 计算机科学 人工智能 机器学习 一致性(知识库) 集合(抽象数据类型) 鉴定(生物学) 开放集 故障检测与隔离 缩小 领域(数学分析) 理论(学习稳定性) 数据挖掘 模式识别(心理学) 工程类 数学 数学分析 离散数学 地震学 执行机构 程序设计语言 地质学 植物 生物
作者
Li Wang,Yiping Gao,Xinyu Li,Liang Gao
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 10314-10324 被引量:5
标识
DOI:10.1109/tii.2024.3396335
摘要

Crossing different working conditions is a common scenario in rotating machinery fault diagnosis, which can be solved by cross-domain transfer learning. However, the existing diagnosis methods do not consider possibly new and unknown faults, i.e., open-set fault diagnosis scenarios, which would cause diagnosis performance degradation. To address this issue, in this article, the self-supervised-enabled open-set cross-domain (SEOC) approach is proposed for fault diagnosis of rotary machines under various working conditions. Specifically, open-set risk minimization and self-supervised contrastive learning are proposed to improve distinguishability and stability. A pseudolabel consistency self-training is designed to decrease the domain shift. A novel open-set identification strategy with the designed squeeze confidence rule is developed for unknown- and known-class fault detection. Experiments on three-phase motor and bearing datasets illustrate the superior and efficient performance of the proposed SEOC method. The proposed SEOC framework improves the overall classification accuracies by at least 9%, and the average accuracy of unknown fault identification is more than 97.68% in motor and bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eraaaaa发布了新的文献求助10
1秒前
吴钩霜雪明关注了科研通微信公众号
1秒前
孙燕应助科研巨星采纳,获得10
1秒前
打打应助小仲马采纳,获得30
2秒前
3秒前
李健应助鳗鱼飞松采纳,获得10
4秒前
TOF发布了新的文献求助10
5秒前
jewie完成签到 ,获得积分10
7秒前
8秒前
Akim应助baoziya采纳,获得10
9秒前
科研助手6应助yangyangyang采纳,获得10
10秒前
11秒前
Eraaaaa完成签到,获得积分10
11秒前
12秒前
li完成签到 ,获得积分10
13秒前
玊尔发布了新的文献求助10
13秒前
14秒前
Jasper应助乌禅采纳,获得10
14秒前
cc发布了新的文献求助10
14秒前
Aaron发布了新的文献求助10
16秒前
通行证完成签到,获得积分10
18秒前
19秒前
liu完成签到,获得积分20
20秒前
魔幻的青烟关注了科研通微信公众号
21秒前
张萌发布了新的文献求助10
21秒前
22秒前
23秒前
抗起大炮就是轰完成签到,获得积分10
24秒前
TiAmo完成签到 ,获得积分10
25秒前
在水一方应助cc采纳,获得30
26秒前
我是老大应助Aaron采纳,获得10
27秒前
28秒前
奋斗橘子发布了新的文献求助30
28秒前
29秒前
科研通AI5应助liu采纳,获得10
30秒前
虚幻初之完成签到,获得积分10
31秒前
懒羊羊完成签到,获得积分10
33秒前
33秒前
35秒前
漂亮百褶裙完成签到,获得积分10
35秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843860
求助须知:如何正确求助?哪些是违规求助? 3386212
关于积分的说明 10544206
捐赠科研通 3107013
什么是DOI,文献DOI怎么找? 1711358
邀请新用户注册赠送积分活动 824049
科研通“疑难数据库(出版商)”最低求助积分说明 774409