Optimization‐based motion planning for autonomous agricultural vehicles turning in constrained headlands

地头 转弯半径 运动学 运动规划 弹道 工程类 路径(计算) 计算机科学 数学优化 机器人 人工智能 数学 航空航天工程 地质学 海洋学 物理 经典力学 海岸 程序设计语言 天文
作者
Chen Peng,Peng Wei,Zhenghao Fei,Yuankai Zhu,Stavros Vougioukas
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:41 (6): 1984-2008 被引量:7
标识
DOI:10.1002/rob.22374
摘要

Abstract Headland maneuvering is a crucial part of the field operations performed by autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial autoguidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles, rendering the task of planning a smooth and collision‐free turning trajectory difficult. To address this challenge, we propose an optimization‐based motion planning algorithm for headland turning under geometrical constraints imposed by headland geometry and obstacles. Our method models the headland and the AAV using convex polytopes as geometric primitives, and calculates optimal and collision‐free turning trajectories in two stages. In the first stage, a coarse path is generated using either a classical pattern‐based turning method or a directional graph‐guided hybrid A* algorithm, depending on the complexity of the headland geometry. The second stage refines this coarse path by feeding it into a numerical optimizer, which considers the vehicle's kinematic, control, and collision‐avoidance constraints to produce a feasible and smooth trajectory. We demonstrate the effectiveness of our algorithm by comparing it to the classical pattern‐based method in various types of headlands. The results show that our optimization‐based planner outperforms the classical planner in generating collision‐free turning trajectories inside constrained headland spaces. Additionally, the trajectories generated by our planner respect the kinematic and control limits of the vehicle and, hence, are easier for a path‐tracking controller to follow. In conclusion, our proposed approach successfully addresses complex motion planning problems in constrained headlands, making it a valuable contribution to the autonomous operation of AAVs, particularly in real‐world orchard environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ying发布了新的文献求助10
刚刚
1秒前
3秒前
4秒前
5秒前
寒冷的煜祺完成签到,获得积分10
5秒前
6秒前
6秒前
jingjing发布了新的文献求助10
7秒前
8秒前
科研通AI6应助vivian采纳,获得10
9秒前
铮铮完成签到,获得积分10
10秒前
Satan发布了新的文献求助10
10秒前
10秒前
10秒前
搞怪冷之发布了新的文献求助10
10秒前
明天完成签到 ,获得积分10
11秒前
boboboki完成签到 ,获得积分10
11秒前
11秒前
qqqqqqqq完成签到,获得积分10
12秒前
12秒前
13秒前
hcxhch发布了新的文献求助10
13秒前
bkagyin应助gqwe采纳,获得10
14秒前
杜萌萌发布了新的文献求助10
15秒前
kang完成签到,获得积分10
16秒前
zz发布了新的文献求助10
17秒前
香蕉觅云应助云上人采纳,获得10
17秒前
17秒前
Satan完成签到,获得积分10
17秒前
18秒前
修管子发布了新的文献求助10
18秒前
大模型应助陈转霞采纳,获得10
18秒前
Cx330发布了新的文献求助10
18秒前
19秒前
20秒前
燕烟完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914