Optimization‐based motion planning for autonomous agricultural vehicles turning in constrained headlands

地头 转弯半径 运动学 运动规划 弹道 工程类 路径(计算) 计算机科学 数学优化 机器人 人工智能 数学 航空航天工程 地质学 海洋学 物理 经典力学 天文 海岸 程序设计语言
作者
Chen Peng,Peng Wei,Zhenghao Fei,Yuankai Zhu,Stavros Vougioukas
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:41 (6): 1984-2008 被引量:4
标识
DOI:10.1002/rob.22374
摘要

Abstract Headland maneuvering is a crucial part of the field operations performed by autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial autoguidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles, rendering the task of planning a smooth and collision‐free turning trajectory difficult. To address this challenge, we propose an optimization‐based motion planning algorithm for headland turning under geometrical constraints imposed by headland geometry and obstacles. Our method models the headland and the AAV using convex polytopes as geometric primitives, and calculates optimal and collision‐free turning trajectories in two stages. In the first stage, a coarse path is generated using either a classical pattern‐based turning method or a directional graph‐guided hybrid A* algorithm, depending on the complexity of the headland geometry. The second stage refines this coarse path by feeding it into a numerical optimizer, which considers the vehicle's kinematic, control, and collision‐avoidance constraints to produce a feasible and smooth trajectory. We demonstrate the effectiveness of our algorithm by comparing it to the classical pattern‐based method in various types of headlands. The results show that our optimization‐based planner outperforms the classical planner in generating collision‐free turning trajectories inside constrained headland spaces. Additionally, the trajectories generated by our planner respect the kinematic and control limits of the vehicle and, hence, are easier for a path‐tracking controller to follow. In conclusion, our proposed approach successfully addresses complex motion planning problems in constrained headlands, making it a valuable contribution to the autonomous operation of AAVs, particularly in real‐world orchard environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panisa鹅完成签到 ,获得积分10
刚刚
1秒前
繁荣的夏岚给繁荣的夏岚的求助进行了留言
3秒前
cyanpomelo完成签到 ,获得积分10
3秒前
chali48完成签到 ,获得积分10
5秒前
6秒前
tzp发布了新的文献求助100
9秒前
Akim应助dd99081采纳,获得10
13秒前
19秒前
jj824完成签到 ,获得积分10
19秒前
21秒前
xzy998应助科研通管家采纳,获得10
23秒前
wanci应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
Kira发布了新的文献求助30
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
华仔应助科研通管家采纳,获得10
23秒前
所所应助科研通管家采纳,获得10
23秒前
shine完成签到,获得积分10
23秒前
Luka应助moca采纳,获得30
24秒前
27秒前
陈JY完成签到 ,获得积分10
27秒前
27秒前
白樱恋曲发布了新的文献求助10
27秒前
奋斗人雄完成签到,获得积分10
29秒前
科研通AI5应助高大头采纳,获得10
30秒前
32秒前
35秒前
七QI完成签到 ,获得积分10
38秒前
40秒前
小馒头发布了新的文献求助30
43秒前
小李老博应助苗条丹南采纳,获得10
43秒前
spujo给spujo的求助进行了留言
45秒前
秋夜白发布了新的文献求助10
45秒前
45秒前
特特雷珀萨努完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777336
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211156
捐赠科研通 3038009
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098