Identification of schizophrenia by applying interpretable radiomics modeling with structural magnetic resonance imaging of the cerebellum

小脑 神经影像学 精神分裂症(面向对象编程) 磁共振成像 心理学 神经科学 可解释性 人工智能 医学 计算机科学 精神科 放射科
作者
Minji Bang,Ki Sung Park,Seoung‐Ho Choi,Sung Soo Ahn,Jinna Kim,Seung‐Koo Lee,Yae Won Park,Sang‐Hyuk Lee
出处
期刊:Psychiatry and Clinical Neurosciences [Wiley]
标识
DOI:10.1111/pcn.13707
摘要

Aims The cerebellum is involved in higher‐order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1‐weighted magnetic resonance imaging (T1‐MRI) of the cerebellum. Methods A total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1‐MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability. Results We identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82–0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second‐order size zone non‐uniformity feature from the right lobule IX and first‐order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia. Conclusion The radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease‐defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker‐based decision‐making in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清心淡如水完成签到,获得积分10
刚刚
科研通AI5应助轻松小张采纳,获得10
刚刚
1秒前
2秒前
MAIDANG发布了新的文献求助10
3秒前
佟韩发布了新的文献求助10
4秒前
HEAR给chenzy1987的求助进行了留言
4秒前
幽弥狂完成签到,获得积分10
4秒前
4秒前
6秒前
高山流水完成签到,获得积分10
6秒前
汉堡包应助王小白采纳,获得10
7秒前
8秒前
10秒前
洛洛发布了新的文献求助10
11秒前
11秒前
小橙发布了新的文献求助10
12秒前
科研通AI5应助LeezZZZ采纳,获得10
12秒前
13秒前
善学以致用应助佟韩采纳,获得10
15秒前
过过过发布了新的文献求助200
16秒前
16秒前
糊涂的寒蕾完成签到,获得积分10
18秒前
19秒前
彭于晏应助潘潘采纳,获得10
21秒前
SYLH应助糊涂的寒蕾采纳,获得20
22秒前
星辰大海应助hudiefeifei306采纳,获得10
22秒前
王小白发布了新的文献求助10
22秒前
科研通AI5应助冯习采纳,获得10
26秒前
蓝莓酥study完成签到,获得积分10
26秒前
HEIKU举报海洋求助涉嫌违规
29秒前
王小白完成签到,获得积分10
29秒前
29秒前
32秒前
NexusExplorer应助我不是阿呆采纳,获得10
34秒前
35秒前
HongqiZhang完成签到 ,获得积分10
36秒前
潘潘发布了新的文献求助10
36秒前
ll发布了新的文献求助10
36秒前
聪明的惜芹完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776925
求助须知:如何正确求助?哪些是违规求助? 3322345
关于积分的说明 10209855
捐赠科研通 3037696
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 758001