已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards a digital twin framework in additive manufacturing: Machine learning and bayesian optimization for time series process optimization

贝叶斯优化 过程(计算) 计算机科学 工艺优化 贝叶斯概率 贝叶斯推理 机器学习 代表(政治) 推论 过程控制 人工智能 工程类 政治 操作系统 环境工程 法学 政治学
作者
Vispi Karkaria,Anthony Goeckner,Rujing Zha,Jie Chen,Jianjing Zhang,Qi Zhu,Jian Cao,Robert X. Gao,Wei Chen
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:75: 322-332 被引量:18
标识
DOI:10.1016/j.jmsy.2024.04.023
摘要

Laser directed-energy deposition (DED) offers notable advantages in additive manufacturing (AM) for producing intricate geometries and facilitating material functional grading. However, inherent challenges such as material property inconsistencies and part variability persist, predominantly due to its layer-wise fabrication approach. Critical to these challenges is heat accumulation during DED, influencing the resultant material microstructure and properties. Although closed-loop control methods for managing heat accumulation and temperature regulation are prevalent in DED literature, few approaches integrate real-time monitoring, physics-based modeling, and control simultaneously in a cohesive framework. To address this, we present a digital twin (DT) framework for real-time model predictive control of process parameters of the DED for achieving a specific process design objective. To enable its implementation, we detail the development of a surrogate model utilizing Long Short-Term Memory (LSTM)-based machine learning which uses Bayesian Inference to predict temperatures across various spatial locations of the DED-built part. This model offers real-time predictions of future temperature states. In addition, we introduce a Bayesian Optimization (BO) method for Time Series Process Optimization (BOTSPO). Its foundational principles align with traditional BO, and its novelty lies in our unique time series process profile generator with a reduced dimensional representation. BOTSPO is used for dynamic process optimization in which we deploy BOTSPO to determine the optimal laser power profile, aiming to achieve desired mechanical properties in a DED build. The identified profile establishes a process trajectory that online process optimizations aim to match or exceed in performance. This paper elucidates components of the digital twin framework, advocating its prospective consolidation into a comprehensive digital twin system for AM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5易6完成签到 ,获得积分10
4秒前
wanci应助cubicsun采纳,获得10
6秒前
Owen应助高高的毒娘采纳,获得10
6秒前
黄小花发布了新的文献求助10
10秒前
ZYY完成签到,获得积分10
10秒前
11秒前
天天快乐应助哈迪采纳,获得10
13秒前
jasonjiang完成签到 ,获得积分0
16秒前
jiang发布了新的文献求助10
17秒前
搞怪的秋柳完成签到,获得积分10
19秒前
cubicsun完成签到,获得积分10
19秒前
leoelizabeth完成签到 ,获得积分10
20秒前
我是老大应助grass采纳,获得10
21秒前
李平进完成签到,获得积分10
25秒前
32秒前
爆米花应助nenoaowu采纳,获得30
34秒前
英俊的铭应助从心从心采纳,获得10
41秒前
41秒前
坚定的若雁完成签到,获得积分10
44秒前
从容甜瓜完成签到 ,获得积分10
45秒前
45秒前
AKKKK完成签到,获得积分10
48秒前
搜集达人应助tly采纳,获得10
49秒前
J33关闭了J33文献求助
53秒前
54秒前
黄小花完成签到,获得积分10
58秒前
59秒前
negue发布了新的文献求助10
1分钟前
滴滴哒发布了新的文献求助10
1分钟前
林淼完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzx完成签到 ,获得积分10
1分钟前
NexusExplorer应助大雄先生采纳,获得10
1分钟前
务实颜完成签到 ,获得积分10
1分钟前
柠檬水发布了新的文献求助10
1分钟前
小凤发布了新的文献求助10
1分钟前
油赞子发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916463
求助须知:如何正确求助?哪些是违规求助? 3461982
关于积分的说明 10919871
捐赠科研通 3188786
什么是DOI,文献DOI怎么找? 1762797
邀请新用户注册赠送积分活动 853187
科研通“疑难数据库(出版商)”最低求助积分说明 793716