A comprehensive assessment of machine learning algorithms for enhanced characterization and prediction in orodispersible film development

机器学习 人工智能 计算机科学 支持向量机 灵活性(工程) 随机森林 领域(数学) 算法 数学 统计 纯数学
作者
Erna Turković,Ivana Vasiljević,Jelena Parojčić
出处
期刊:International Journal of Pharmaceutics [Elsevier BV]
卷期号:658: 124188-124188 被引量:1
标识
DOI:10.1016/j.ijpharm.2024.124188
摘要

Orodispersible films (ODFs) have emerged as innovative pharmaceutical dosage forms, offering patient-specific treatment through adjustable dosing and the combination of diverse active ingredients. This expanding field generates vast datasets, requiring advanced analytical techniques for deeper understanding of data itself. Machine learning is becoming an important tool in the rapidly changing field of pharmaceutical research, particularly in drug preformulation studies. This work aims to explore into the application of machine learning methods for the analysis of experimental data obtained by ODF characterization in order to obtain an insight into the factors governing ODF performance and use it as guidance in pharmaceutical development. Using a dataset derived from extensive experimental studies, various machine learning algorithms were employed to cluster and predict critical properties of ODFs. Our results demonstrate that machine learning models, including Support vector machine, Random forest and Deep learning, exhibit high accuracy in predicting the mechanical properties of ODFs, such as flexibility and rigidity. The predictive models offered insights into the complex interaction of formulation variables. This research is a pilot study that highlights the potential of machine learning as a transformative approach in the pharmaceutical field, paving the way for more efficient and informed drug development processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的无心完成签到 ,获得积分10
1秒前
鑫博发布了新的文献求助10
2秒前
dachengzi发布了新的文献求助10
2秒前
东方雨落发布了新的文献求助10
3秒前
脑洞疼应助Jerry采纳,获得10
6秒前
小马甲应助录用采纳,获得10
6秒前
7秒前
7秒前
7秒前
传奇3应助饭团不吃鱼采纳,获得10
8秒前
8秒前
丘比特应助如意鸭子采纳,获得10
8秒前
lixiaofan完成签到,获得积分10
9秒前
Orange应助感性的俊驰采纳,获得10
9秒前
菠萝萝萝王子完成签到,获得积分20
10秒前
10秒前
风中水风发布了新的文献求助10
11秒前
有缘人完成签到,获得积分10
11秒前
11秒前
在水一方应助鹏大鹏采纳,获得10
11秒前
脑洞疼应助土豪的飞荷采纳,获得10
12秒前
猫捡球发布了新的文献求助10
12秒前
lixiaofan发布了新的文献求助10
12秒前
14秒前
15秒前
冷静初彤应助风中水风采纳,获得10
16秒前
17秒前
17秒前
追光发布了新的文献求助10
18秒前
李博诚发布了新的文献求助10
19秒前
21秒前
jinxixi应助xiaoli采纳,获得60
22秒前
去晒月亮发布了新的文献求助10
22秒前
qweasdzxc发布了新的文献求助10
22秒前
22秒前
lican完成签到 ,获得积分10
23秒前
w7发布了新的文献求助10
24秒前
24秒前
24秒前
26秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906331
求助须知:如何正确求助?哪些是违规求助? 3452107
关于积分的说明 10867485
捐赠科研通 3177533
什么是DOI,文献DOI怎么找? 1755484
邀请新用户注册赠送积分活动 848801
科研通“疑难数据库(出版商)”最低求助积分说明 791294