A Novel Proposal for Improving Economic Decision-Making Through Stock Price Index Forecasting

索引(排版) 股票价格 经济预测 库存(枪支) 业务 经济 计算机科学 计量经济学 工程类 机械工程 生物 万维网 系列(地层学) 古生物学
作者
Yao Xu,Weikang Zeng,Lei Zhu,Xiaoxiao Wu,Di Li
出处
期刊:International Journal of Advanced Computer Science and Applications [Science and Information Organization]
卷期号:15 (4)
标识
DOI:10.14569/ijacsa.2024.0150499
摘要

The non-stationary, non-linear, and extremely noisy nature of stock price time series data, which are created from economic factors and systematic and unsystematic risks, makes it difficult to make reliable predictions of stock prices in the securities market. Conventional methods may improve forecasting accuracy, but they can additionally complicate the computations involved, increasing the likelihood of prediction errors. To address these issues, a novel hybrid model that combines recurrent neural networks and grey wolf optimization was introduced in the current study. The suggested model outperformed other models in the study with high efficacy, minimal error, and peak performance. Utilizing data from Alphabet stock spanning from June 29, 2023, to January 1, 2015, the effectiveness of the hybrid model was assessed. The gathered information comprised daily prices and trading volume. The outcomes showed that the suggested model is a reliable and effective method for analyzing and forecasting the time series of the financial market. The suggested model is additionally particularly well-suited to the volatile stock market and outperforms other recent strategies in terms of forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的绾绾完成签到 ,获得积分10
1秒前
Youdge应助菜根谭采纳,获得20
3秒前
6秒前
迷路的芝麻完成签到 ,获得积分10
7秒前
HXuer完成签到,获得积分10
8秒前
mm关闭了mm文献求助
8秒前
CodeCraft应助天衣无缝采纳,获得10
9秒前
9秒前
10秒前
jiyuehan666发布了新的文献求助10
11秒前
徐佳乐完成签到,获得积分10
11秒前
Hello应助欣慰的白羊采纳,获得10
12秒前
YUuuu完成签到,获得积分10
14秒前
飞快的雅青完成签到 ,获得积分10
15秒前
16秒前
17秒前
ca驳回了Reborn应助
17秒前
17秒前
18秒前
18秒前
18秒前
22秒前
22秒前
深情冬云发布了新的文献求助10
22秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
无花果应助科研通管家采纳,获得10
26秒前
26秒前
lby完成签到 ,获得积分10
26秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
27秒前
27秒前
深情安青应助科研通管家采纳,获得10
27秒前
丫丫发布了新的文献求助10
27秒前
烤乳猪完成签到,获得积分10
28秒前
小老板完成签到,获得积分10
30秒前
乐乐应助学习学习学习采纳,获得10
31秒前
dox发布了新的文献求助30
32秒前
领导范儿应助友好雅山采纳,获得10
34秒前
JamesPei应助丫丫采纳,获得10
34秒前
淑欢完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388362
关于积分的说明 10552922
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982