化学
小RNA
纳米线
色谱法
纳米技术
生物化学
基因
材料科学
作者
Shiwei Xu,Guofeng Wang,Yueyue Feng,Juanjuan Zheng,Liying Huang,Jiahao Liu,Yisha Jiang,Yajun Wang,Nannan Liu
标识
DOI:10.1021/acs.analchem.3c05839
摘要
MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18–25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM–100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102–108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.
科研通智能强力驱动
Strongly Powered by AbleSci AI