PointNAT: Large-Scale Point Cloud Semantic Segmentation via Neighbor Aggregation With Transformer

计算机科学 分割 k-最近邻算法 点云 云计算 变压器 块(置换群论) 数据挖掘 模式识别(心理学) 机器学习 人工智能 数学 工程类 操作系统 几何学 电压 电气工程
作者
Ziyin Zeng,Huan Qiu,Jian Zhou,Zhen Dong,Jinsheng Xiao,Bijun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:8
标识
DOI:10.1109/tgrs.2024.3407761
摘要

Given the prominence of 3D sensors in recent years, 3D point clouds are worthy to be further investigated for environment perception and scene understanding. Learning accurate local and global contexts in point clouds is pivotal for semantic segmentation, and neighbor aggregation and Transformers have achieved notable success in local and global perception in point cloud analysis, respectively. Nevertheless, studying each independently is far from the optimal solution for comprehensive feature learning. To address this, we take a novel step towards investigating and integrating the structures of neighbor aggregation and Transformers. In this paper, we introduce Point Neighbor Aggregation with Transformer (PointNAT), a conceptually straightforward and effective approach aiming to enhance the performance of 3D point cloud semantic segmentation. PointNAT consists of a Neighbor Aggregation Block (NAB) for local perception, a Point Transformer Block (PTB) for global modeling, and a Hybrid Block to connect NABs and PTBs. NABs effectively learn complex local features at varying scales through an improved neighbor aggregation operation and a multi-head mechanism. PTBs efficiently perform global attention using a small set of learnable key points. Hybrid Blocks serve as high-and-low frequency signal hybridizers, merging the strengths of these two blocks by adaptively assigning hybrid weights to local and global contexts. We have evaluated the performance of PointNAT with state-of-the-art networks on several benchmarks, including S3DIS, Toronto3D, and SensatUrban. PointNAT achieves mIoU scores of 77.8%, 84.7%, and 65.2% in these three dataset, respectively. Furthermore, it outperforms the baseline approach PointNeXt by 3.0%, 1.3%, and 4.2%, respectively, while utilizing only 59.9% of the parameters and 15.2% of the FLOPs. The results demonstrate PointNAT's superior ability in accurately segmenting large-scale 3D point cloud scenes, emphasizing its potential to advance environment perception and scene understanding. Our code is available at https://github.com/zeng-ziyin/PointNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiahe完成签到,获得积分10
刚刚
旺仔完成签到,获得积分10
刚刚
万晓娜发布了新的文献求助10
1秒前
dwhnx发布了新的文献求助10
1秒前
klq发布了新的文献求助10
2秒前
畅快山兰发布了新的文献求助10
2秒前
2秒前
sasasas发布了新的文献求助10
4秒前
monere发布了新的文献求助10
5秒前
8秒前
深水中的阳光完成签到,获得积分10
8秒前
8秒前
求助发布了新的文献求助10
8秒前
Zyq1231完成签到,获得积分10
8秒前
9秒前
欧欧欧导完成签到,获得积分10
11秒前
甜甜问儿发布了新的文献求助10
13秒前
柯夫子发布了新的文献求助10
15秒前
dwhnx完成签到,获得积分10
15秒前
思源应助111采纳,获得10
15秒前
赘婿应助刻苦的秋采纳,获得10
15秒前
火花发布了新的文献求助10
16秒前
c36wk发布了新的文献求助10
16秒前
乐乐应助洼地的浮游生物采纳,获得10
17秒前
17秒前
17秒前
qjw发布了新的文献求助10
17秒前
慕青应助怕孤单的惜梦采纳,获得10
19秒前
打打应助第七个星球采纳,获得10
20秒前
21秒前
巴甫洛夫的小狗完成签到,获得积分10
22秒前
丘比特应助xnkl采纳,获得10
23秒前
holmes发布了新的文献求助10
23秒前
yang完成签到,获得积分10
23秒前
雪白的语堂完成签到,获得积分20
24秒前
24秒前
25秒前
伶俐的冥完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4722599
求助须知:如何正确求助?哪些是违规求助? 4081945
关于积分的说明 12623191
捐赠科研通 3787452
什么是DOI,文献DOI怎么找? 2091758
邀请新用户注册赠送积分活动 1117755
科研通“疑难数据库(出版商)”最低求助积分说明 994562