已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PointNAT: Large-Scale Point Cloud Semantic Segmentation via Neighbor Aggregation With Transformer

计算机科学 分割 k-最近邻算法 点云 云计算 变压器 块(置换群论) 数据挖掘 模式识别(心理学) 机器学习 人工智能 数学 工程类 操作系统 几何学 电压 电气工程
作者
Ziyin Zeng,Huan Qiu,Jian Zhou,Zhen Dong,Jinsheng Xiao,Bijun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-18 被引量:18
标识
DOI:10.1109/tgrs.2024.3407761
摘要

Given the prominence of 3D sensors in recent years, 3D point clouds are worthy to be further investigated for environment perception and scene understanding. Learning accurate local and global contexts in point clouds is pivotal for semantic segmentation, and neighbor aggregation and Transformers have achieved notable success in local and global perception in point cloud analysis, respectively. Nevertheless, studying each independently is far from the optimal solution for comprehensive feature learning. To address this, we take a novel step towards investigating and integrating the structures of neighbor aggregation and Transformers. In this paper, we introduce Point Neighbor Aggregation with Transformer (PointNAT), a conceptually straightforward and effective approach aiming to enhance the performance of 3D point cloud semantic segmentation. PointNAT consists of a Neighbor Aggregation Block (NAB) for local perception, a Point Transformer Block (PTB) for global modeling, and a Hybrid Block to connect NABs and PTBs. NABs effectively learn complex local features at varying scales through an improved neighbor aggregation operation and a multi-head mechanism. PTBs efficiently perform global attention using a small set of learnable key points. Hybrid Blocks serve as high-and-low frequency signal hybridizers, merging the strengths of these two blocks by adaptively assigning hybrid weights to local and global contexts. We have evaluated the performance of PointNAT with state-of-the-art networks on several benchmarks, including S3DIS, Toronto3D, and SensatUrban. PointNAT achieves mIoU scores of 77.8%, 84.7%, and 65.2% in these three dataset, respectively. Furthermore, it outperforms the baseline approach PointNeXt by 3.0%, 1.3%, and 4.2%, respectively, while utilizing only 59.9% of the parameters and 15.2% of the FLOPs. The results demonstrate PointNAT's superior ability in accurately segmenting large-scale 3D point cloud scenes, emphasizing its potential to advance environment perception and scene understanding. Our code is available at https://github.com/zeng-ziyin/PointNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助rngay采纳,获得30
2秒前
yy完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
FF完成签到 ,获得积分10
5秒前
5秒前
隐形路灯完成签到 ,获得积分10
6秒前
西西完成签到,获得积分10
7秒前
汉堡包应助碧蓝的往事采纳,获得10
7秒前
wuyaRY发布了新的文献求助10
8秒前
10秒前
10秒前
cyan完成签到 ,获得积分10
11秒前
马马完成签到 ,获得积分10
11秒前
zhizhi完成签到 ,获得积分10
11秒前
英俊的铭应助尊敬谷波采纳,获得10
12秒前
13秒前
明亮盼望发布了新的文献求助30
13秒前
15秒前
浮游应助li2010采纳,获得10
16秒前
星辰大海应助li2010采纳,获得10
16秒前
正直的广缘完成签到 ,获得积分10
16秒前
16秒前
Vv完成签到,获得积分10
18秒前
pgojpogk发布了新的文献求助30
18秒前
科研通AI6应助chenren采纳,获得10
20秒前
20秒前
21秒前
孙誉文发布了新的文献求助10
22秒前
念想完成签到 ,获得积分10
22秒前
小马甲应助明亮盼望采纳,获得10
22秒前
22秒前
24秒前
YYC发布了新的文献求助10
24秒前
青岚完成签到,获得积分10
25秒前
紫陌完成签到,获得积分10
25秒前
26秒前
小刘小刘完成签到,获得积分10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557505
关于积分的说明 14263900
捐赠科研通 4480602
什么是DOI,文献DOI怎么找? 2454498
邀请新用户注册赠送积分活动 1445221
关于科研通互助平台的介绍 1421016