APHS-YOLO: A Lightweight Model for Real-Time Detection and Classification of Stropharia Rugoso-Annulata

计算机科学 分类 卷积(计算机科学) 人工智能 核(代数) 特征(语言学) 卷积神经网络 特征提取 任务(项目管理) 模式识别(心理学) 计算机视觉 算法 数学 人工神经网络 工程类 语言学 哲学 系统工程 组合数学
作者
Renming Liu,Wen‐Hao Su
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:13 (11): 1710-1710 被引量:3
标识
DOI:10.3390/foods13111710
摘要

The classification of Stropharia rugoso-annulata is currently reliant on manual sorting, which may be subject to bias. To improve the sorting efficiency, automated sorting equipment could be used instead. However, sorting naked mushrooms in real time remains a challenging task due to the difficulty of accurately identifying, locating and sorting large quantities of them simultaneously. Models must be deployable on resource-limited devices, making it challenging to achieve both a high accuracy and speed. This paper proposes the APHS-YOLO (YOLOv8n integrated with AKConv, CSPPC and HSFPN modules) model, which is lightweight and efficient, for identifying Stropharia rugoso-annulata of different grades and seasons. This study includes a complete dataset of runners of different grades in spring and autumn. To enhance feature extraction and maintain the recognition accuracy, the new multi-module APHS-YOLO uses HSFPNs (High-Level Screening Feature Pyramid Networks) as a thin-neck structure. It combines an improved lightweight PConv (Partial Convolution)-based convolutional module, CSPPC (Integration of Cross-Stage Partial Networks and Partial Convolution), with the Arbitrary Kernel Convolution (AKConv) module. Additionally, to compensate for the accuracy loss due to lightweighting, APHS-YOLO employs a knowledge refinement technique during training. Compared to the original model, the optimized APHS-YOLO model uses 57.8% less memory and 62.5% fewer computational resources. It has an FPS (frames per second) of over 100 and even achieves 0.1% better accuracy metrics than the original model. These research results provide a valuable reference for the development of automatic sorting equipment for forest farmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助濠哥妈咪采纳,获得10
2秒前
2秒前
彩色布条发布了新的文献求助30
2秒前
Akim应助小椿采纳,获得10
3秒前
RossYang发布了新的文献求助10
4秒前
bluee完成签到,获得积分10
4秒前
5秒前
笨笨芯发布了新的文献求助10
6秒前
多肉葡萄完成签到 ,获得积分10
6秒前
7秒前
llchen完成签到,获得积分0
8秒前
8秒前
Angela完成签到,获得积分10
10秒前
老仙翁发布了新的文献求助10
11秒前
隐形曼青应助猪猪hero采纳,获得10
11秒前
12秒前
濠哥妈咪发布了新的文献求助10
13秒前
无问完成签到,获得积分10
15秒前
云朗完成签到,获得积分10
17秒前
老仙翁完成签到,获得积分10
17秒前
19秒前
Wei完成签到 ,获得积分10
19秒前
倒背如流圆周率完成签到,获得积分10
20秒前
RossYang完成签到,获得积分20
21秒前
22秒前
23秒前
25秒前
25秒前
zhentg完成签到,获得积分0
26秒前
小椿发布了新的文献求助10
26秒前
xd完成签到,获得积分10
29秒前
30秒前
32秒前
阿猩a完成签到 ,获得积分10
33秒前
青树柠檬完成签到 ,获得积分10
34秒前
34秒前
彩色布条完成签到,获得积分10
34秒前
科研通AI5应助麦子采纳,获得10
35秒前
奕逸发布了新的文献求助10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742