调制(音乐)
计算机科学
集合(抽象数据类型)
推论
模式识别(心理学)
人工智能
信号(编程语言)
增量调制
方案(数学)
人工神经网络
训练集
语音识别
机器学习
脉冲幅度调制
电信
数学
数学分析
哲学
探测器
脉搏(音乐)
程序设计语言
美学
标识
DOI:10.1109/wocc58016.2023.10139594
摘要
This paper discusses applying a set of YOLOv5 neural networks to the WBSig53 dataset in order to perform modulation recognition. Identifying modulation schemes is a main step in the development of smart receivers. In this effort, attention is payed to the amount of time needed for training as well as inference speed. Signal detection, modulation family classification, and individual modulation scheme recognition are explored on clean and impaired WBSig53 data.
科研通智能强力驱动
Strongly Powered by AbleSci AI