Validation of Machine Learning Model Performance in Predicting Blood Transfusion After Primary and Revision Total Hip Arthroplasty

医学 布里氏评分 输血 概化理论 红细胞压积 逻辑回归 全髋关节置换术 曲线下面积 关节置换术 机器学习 外科 内科学 统计 计算机科学 数学
作者
Anirudh Buddhiraju,Michelle Riyo Shimizu,Murad Abdullah Subih,Tony Lin‐Wei Chen,Henry Hojoon Seo,Young-Min Kwon
出处
期刊:Journal of Arthroplasty [Elsevier BV]
卷期号:38 (10): 1959-1966 被引量:12
标识
DOI:10.1016/j.arth.2023.06.002
摘要

The rates of blood transfusion following primary and revision total hip arthroplasty (THA) remain as high as 9% and 18%, respectively, contributing to patient morbidity and healthcare costs. Existing predictive tools are limited to specific populations, thereby diminishing their clinical applicability. This study aimed to externally validate our previous institutionally developed machine learning (ML) algorithms to predict the risk of postoperative blood transfusion following primary and revision THA using national inpatient data.Five ML algorithms were trained and validated using data from 101,266 primary THA and 8,594 revision THA patients from a large national database to predict postoperative transfusion risk after primary and revision THA. Models were assessed and compared based on discrimination, calibration, and decision curve analysis.The most important predictors of transfusion following primary and revision THA were preoperative hematocrit (<39.4%) and operation time (>157 minutes), respectively. All ML models demonstrated excellent discrimination (area under the curve (AUC) >0.8) in primary and revision THA patients, with artificial neural network (AUC = 0.84, slope = 1.11, intercept = -0.04, Brier score = 0.04), and elastic-net-penalized logistic regression (AUC = 0.85, slope = 1.08, intercept = -0.01, and Brier score = 0.12) performing best, respectively. On decision curve analysis, all 5 models demonstrated a higher net benefit than the conventional strategy of intervening for all or no patients in both patient cohorts.This study successfully validated our previous institutionally developed ML algorithms for the prediction of blood transfusion following primary and revision THA. Our findings highlight the potential generalizability of predictive ML tools developed using nationally representative data in THA patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肚子没墨水的GGBOND完成签到,获得积分10
1秒前
2秒前
wo完成签到 ,获得积分10
3秒前
ZS完成签到,获得积分10
4秒前
6秒前
7秒前
didi发布了新的文献求助10
7秒前
小天发布了新的文献求助150
8秒前
9秒前
小精灵发布了新的文献求助10
11秒前
Ryuki完成签到 ,获得积分10
12秒前
didi完成签到,获得积分10
15秒前
16秒前
17秒前
学术通zzz发布了新的文献求助10
17秒前
天津中医药峰完成签到,获得积分10
18秒前
菠萝炒蛋加饭完成签到 ,获得积分10
19秒前
minino完成签到 ,获得积分10
20秒前
moon发布了新的文献求助10
22秒前
Judy完成签到 ,获得积分10
24秒前
28秒前
话哈哈完成签到,获得积分10
28秒前
su完成签到,获得积分10
32秒前
李健应助chrysan采纳,获得10
37秒前
顾矜应助ChencanFang采纳,获得20
37秒前
郝好完成签到 ,获得积分10
39秒前
42秒前
9℃完成签到 ,获得积分10
44秒前
sharks完成签到,获得积分10
45秒前
45秒前
天天快乐应助手可摘星辰采纳,获得10
46秒前
46秒前
46秒前
47秒前
lynn完成签到 ,获得积分10
48秒前
51秒前
123456完成签到 ,获得积分10
51秒前
学术通zzz发布了新的文献求助10
51秒前
王小乐发布了新的文献求助10
52秒前
一二发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323510
关于积分的说明 10214551
捐赠科研通 3038674
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315