Ensemble neural network model for detecting thyroid eye disease using external photographs

召回 人工智能 试验装置 医学 精确性和召回率 人工神经网络 F1得分 接收机工作特性 数据集 深度学习 机器学习 计算机科学 模式识别(心理学) 内科学 语言学 哲学
作者
Justin N. Karlin,Lisa Gai,Nathan LaPierre,Kayla Danesh,Justin Farajzadeh,Bea Palileo,Kodi Taraszka,Jie Zheng,Wei Wang,Eleazar Eskin,Daniel B. Rootman
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:107 (11): 1722-1729 被引量:34
标识
DOI:10.1136/bjo-2022-321833
摘要

Purpose To describe an artificial intelligence platform that detects thyroid eye disease (TED). Design Development of a deep learning model. Methods 1944 photographs from a clinical database were used to train a deep learning model. 344 additional images (‘test set’) were used to calculate performance metrics. Receiver operating characteristic, precision–recall curves and heatmaps were generated. From the test set, 50 images were randomly selected (‘survey set’) and used to compare model performance with ophthalmologist performance. 222 images obtained from a separate clinical database were used to assess model recall and to quantitate model performance with respect to disease stage and grade. Results The model achieved test set accuracy of 89.2%, specificity 86.9%, recall 93.4%, precision 79.7% and an F1 score of 86.0%. Heatmaps demonstrated that the model identified pixels corresponding to clinical features of TED. On the survey set, the ensemble model achieved accuracy, specificity, recall, precision and F1 score of 86%, 84%, 89%, 77% and 82%, respectively. 27 ophthalmologists achieved mean performance of 75%, 82%, 63%, 72% and 66%, respectively. On the second test set, the model achieved recall of 91.9%, with higher recall for moderate to severe (98.2%, n=55) and active disease (98.3%, n=60), as compared with mild (86.8%, n=68) or stable disease (85.7%, n=63). Conclusions The deep learning classifier is a novel approach to identify TED and is a first step in the development of tools to improve diagnostic accuracy and lower barriers to specialist evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研狗采纳,获得10
刚刚
风中亦玉发布了新的文献求助10
刚刚
怪味薯片发布了新的文献求助10
刚刚
1秒前
1秒前
crobro应助周新哲采纳,获得10
2秒前
共享精神应助闲人小年采纳,获得10
3秒前
田様应助十六夜彦采纳,获得10
3秒前
李爱国应助无敌咖啡豆采纳,获得30
5秒前
乐乐应助a超采纳,获得10
5秒前
若尘发布了新的文献求助10
5秒前
上官若男应助风中亦玉采纳,获得10
7秒前
香蕉觅云应助壮观的可以采纳,获得10
9秒前
拾英完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
思思完成签到,获得积分10
10秒前
汉堡包应助就这采纳,获得10
10秒前
11秒前
11秒前
浮游应助追尾的猫采纳,获得10
13秒前
13秒前
14秒前
15秒前
chenqiumu应助zxl采纳,获得30
15秒前
yiyi131发布了新的文献求助10
16秒前
海英发布了新的文献求助20
17秒前
okra给一叶舟的求助进行了留言
17秒前
苹果傲芙发布了新的文献求助10
17秒前
18秒前
chenchen111发布了新的文献求助10
19秒前
共享精神应助江湖樊南生采纳,获得10
19秒前
20秒前
20秒前
躺平的洋仔完成签到,获得积分10
21秒前
22秒前
可靠板栗发布了新的文献求助10
23秒前
23秒前
就这发布了新的文献求助10
24秒前
负责青亦完成签到 ,获得积分10
24秒前
Gavin完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560