Development and Validation of a Deep Learning Model for Brain Tumor Diagnosis and Classification Using Magnetic Resonance Imaging

神经放射学家 磁共振成像 医学 人工智能 深度学习 放射科 脑瘤 数据集 诊断准确性 接收机工作特性 计算机科学 病理 内科学
作者
Peiyi Gao,Wei Shan,Yue Guo,Yinyan Wang,Rujing Sun,Jinxiu Cai,Hao Li,Wei Sheng Chan,Pan Liu,Lei Yi,Shaosen Zhang,Weihua Li,Tao Jiang,Kunlun He,Zhenhua Wu
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (8): e2225608-e2225608 被引量:34
标识
DOI:10.1001/jamanetworkopen.2022.25608
摘要

Importance

Deep learning may be able to use patient magnetic resonance imaging (MRI) data to aid in brain tumor classification and diagnosis.

Objective

To develop and clinically validate a deep learning system for automated identification and classification of 18 types of brain tumors from patient MRI data.

Design, Setting, and Participants

This diagnostic study was conducted using MRI data collected between 2000 and 2019 from 37 871 patients. A deep learning system for segmentation and classification of 18 types of intracranial tumors based on T1- and T2-weighted images and T2 contrast MRI sequences was developed and tested. The diagnostic accuracy of the system was tested using 1 internal and 3 external independent data sets. The clinical value of the system was assessed by comparing the tumor diagnostic accuracy of neuroradiologists with vs without assistance of the proposed system using a separate internal test data set. Data were analyzed from March 2019 through February 2020.

Main Outcomes and Measures

Changes in neuroradiologist clinical diagnostic accuracy in brain MRI scans with vs without the deep learning system were evaluated.

Results

A deep learning system was trained among 37 871 patients (mean [SD] age, 41.6 [11.4] years; 18 519 women [48.9%]). It achieved a mean area under the receiver operating characteristic curve of 0.92 (95% CI, 0.84-0.99) on 1339 patients from 4 centers’ data sets in diagnosis and classification of 18 types of tumors. Higher outcomes were found compared with neuroradiologists for accuracy and sensitivity and similar outcomes for specificity (for 300 patients in the Tiantan Hospital test data set: accuracy, 73.3% [95% CI, 67.7%-77.7%] vs 60.9% [95% CI, 46.8%-75.1%]; sensitivity, 88.9% [95% CI, 85.3%-92.4%] vs 53.4% [95% CI, 41.8%–64.9%]; and specificity, 96.3% [95% CI, 94.2%-98.4%] vs 97.9%; [95% CI, 97.3%-98.5%]). With the assistance of the deep learning system, the mean accuracy of neuroradiologists among 1166 patients increased by 12.0 percentage points, from 63.5% (95% CI, 60.7%-66.2%) without assistance to 75.5% (95% CI, 73.0%-77.9%) with assistance.

Conclusions and Relevance

These findings suggest that deep learning system–based automated diagnosis may be associated with improved classification and diagnosis of intracranial tumors from MRI data among neuroradiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Dong采纳,获得10
刚刚
1秒前
1秒前
1秒前
koya发布了新的文献求助30
2秒前
2秒前
希望天下0贩的0应助惟珦采纳,获得10
3秒前
陀思妥耶夫斯基完成签到 ,获得积分10
4秒前
路宝发布了新的文献求助10
4秒前
苏杰发布了新的文献求助10
5秒前
兴奋猫咪完成签到,获得积分10
5秒前
大胆妙竹完成签到 ,获得积分10
5秒前
热心傲珊发布了新的文献求助10
5秒前
淼多儿完成签到,获得积分10
6秒前
6秒前
6秒前
wendinfgmei发布了新的文献求助10
6秒前
6秒前
whimsyhui发布了新的文献求助10
6秒前
纯真的诗兰完成签到,获得积分10
7秒前
luzi完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
完美世界应助蒲木木采纳,获得10
11秒前
拼搏秋发布了新的文献求助30
11秒前
12秒前
luzi发布了新的文献求助10
12秒前
12秒前
哆啦小奶龙完成签到 ,获得积分10
13秒前
13秒前
屈岂愈完成签到,获得积分10
14秒前
林好人发布了新的文献求助10
14秒前
研友_VZG7GZ应助wjl采纳,获得30
14秒前
14秒前
15秒前
苏杰完成签到,获得积分10
15秒前
赘婿应助Nature采纳,获得10
16秒前
浮游应助wendinfgmei采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5002851
求助须知:如何正确求助?哪些是违规求助? 4247693
关于积分的说明 13233983
捐赠科研通 4046698
什么是DOI,文献DOI怎么找? 2213861
邀请新用户注册赠送积分活动 1223835
关于科研通互助平台的介绍 1144196