Dense Sequential Fusion: Point Cloud Enhancement Using Foreground Mask Guidance for Multimodal 3-D Object Detection

计算机视觉 人工智能 激光雷达 计算机科学 点云 稳健性(进化) 目标检测 传感器融合 模式识别(心理学) 遥感 生物化学 基因 地质学 化学
作者
Chen Xie,Ciyun Lin,Xiaoyu Zheng,Bowen Gong,Hongchao Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:5
标识
DOI:10.1109/tim.2023.3332935
摘要

Object detection forms the foundation of safe autonomous vehicle (AV) operation. LiDAR and camera are both widely used detection devices, yet they each come with their unique advantages and drawbacks. For instance, LiDAR sensors face challenges such as obstacle occlusion and long-range object detection when applied to 3-D object recognition. On the other hand, cameras are significantly affected by variations in lighting and weather conditions, and they struggle to provide precise depth information. Hence, multisensor fusion is frequently employed to enhance both the accuracy and robustness of object detection. Prominent issues associated with end-to-end fusion include feature misalignment and suboptimal training strategies, while the challenge for the sequential fusion architecture lies in its inability to fully tap into the capabilities of high-density images to enhance point cloud data, especially when dealing with information sparsity at extended ranges. To address these challenges, we present a dense sequential fusion (DSF) framework specifically designed to fuse camera and LiDAR sensor data. The primary goal is to enhance the accuracy and robustness of 3-D object detection, particularly for distant objects. First, we developed a model for augmenting foreground points, specifically targeting sparse points associated with far-range objects. Second, a foreground points refinement technique was implemented to filter long-tail points generated by images. This refinement process has the capability to improve the object's distinctiveness, especially when dealing with an abundance of edge points while also supplying high-resolution raw and pseudo foreground points. Finally, voxel-based LiDAR 3-D detection methods were employed to detect 3-D objects utilizing the high-resolution raw and pseudo point clouds. The experimental studies were conducted using the KITTI dataset. The results showed that the proposed method improved 3-D mAP by 2.59% compared with PointPillars and 1.27% average precision (AP) for car hard-level detection compared with SECOND. Furthermore, it improved the bird's eye view (BEV) AP for far-range car detection by more than 10%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三个哈卡发布了新的文献求助10
2秒前
闫俊发布了新的文献求助10
2秒前
独特谷雪发布了新的文献求助10
2秒前
英姑应助steffans采纳,获得10
4秒前
tomato发布了新的文献求助20
4秒前
张建威发布了新的文献求助10
6秒前
天天快乐应助hhhhh哈哈哈采纳,获得30
6秒前
8秒前
笑点低的傲白完成签到,获得积分10
9秒前
9秒前
明理寄瑶应助清心淡如水采纳,获得10
10秒前
xfy发布了新的文献求助10
10秒前
10秒前
10秒前
科研小民工应助拼搏向上采纳,获得200
11秒前
CodeCraft应助Aer采纳,获得10
12秒前
竹筏过海应助XYZ采纳,获得30
13秒前
韩凡发布了新的文献求助10
13秒前
NANAMO发布了新的文献求助10
14秒前
DAWN完成签到 ,获得积分10
14秒前
迟意完成签到,获得积分20
15秒前
15秒前
科研通AI5应助yshog采纳,获得10
16秒前
tpecca发布了新的文献求助10
16秒前
17秒前
penny发布了新的文献求助10
18秒前
落后的凝梦完成签到 ,获得积分10
19秒前
19秒前
21秒前
21秒前
火星上的店员关注了科研通微信公众号
21秒前
张建威完成签到,获得积分20
21秒前
Aer发布了新的文献求助10
24秒前
科研通AI5应助lzy采纳,获得10
24秒前
积极鱼完成签到 ,获得积分10
25秒前
风123完成签到 ,获得积分10
26秒前
烟花应助可可采纳,获得10
27秒前
27秒前
小星完成签到 ,获得积分10
28秒前
迟意关注了科研通微信公众号
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787750
求助须知:如何正确求助?哪些是违规求助? 3333335
关于积分的说明 10261385
捐赠科研通 3049045
什么是DOI,文献DOI怎么找? 1673399
邀请新用户注册赠送积分活动 801891
科研通“疑难数据库(出版商)”最低求助积分说明 760402