FV-DGNN: A Distance-Based Graph Neural Network for Finger Vein Recognition

计算机科学 人工智能 生物识别 模式识别(心理学) 卷积神经网络 匹配(统计) 人工神经网络 特征提取 计算机视觉 数学 统计
作者
Jie Chang,Taotao Lai,Luokun Yang,Chang Fang,Zuoyong Li,Hamido Fujita
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11
标识
DOI:10.1109/tim.2023.3301062
摘要

As a promising biometric identification technology, finger vein recognition has gained considerable attention in the field of information security due to its inherent advantages such as living body recognition, non-contact operation, and high security. However, existing models often focus on pairwise matching of low-contrast infrared finger vein images, overlooking the underlying relationships among the matching information. To address this limitation, we propose a Graph Neural Network (GNN) model that captures the distance-based inter-relation between multiple pairs of samples. Specifically, we design an architecture to obtain a binary finger vein mask image, which guides the model to capture high-level features of finger vein regions while ignoring noises behind non-finger vein regions. Moreover, a distance-based GNN architecture, which models the distance distribution between multiple pairs of finger vein images by fusing the distance information propagated along edges, is proposed to determine the matching degree between each pair of images. Furthermore, to further expedite the proposed model in application, the depth-wise separable convolution layer is adopted in the encoder component of a Convolutional Neural Network (CNN) architecture to reduce the parameters significantly. Extensive experimental results on three public databases have verified the effectiveness of our proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xmhxpz发布了新的文献求助10
1秒前
忧郁若菱完成签到,获得积分20
1秒前
科研通AI2S应助土土采纳,获得10
2秒前
4秒前
4秒前
HCF发布了新的文献求助10
7秒前
慕青应助柠檬酸采纳,获得10
11秒前
Ulysses完成签到,获得积分10
11秒前
22秒前
23秒前
柠檬酸发布了新的文献求助10
26秒前
CR7完成签到,获得积分10
26秒前
26秒前
苏su完成签到,获得积分10
27秒前
研友_Lw7MKL完成签到,获得积分10
28秒前
春酒4完成签到,获得积分10
28秒前
何阳完成签到,获得积分0
34秒前
研友_yLpQrn完成签到,获得积分10
34秒前
35秒前
35秒前
柠檬酸完成签到,获得积分10
35秒前
黄小北发布了新的文献求助30
36秒前
忧伤的慕梅完成签到 ,获得积分10
39秒前
禾苗完成签到 ,获得积分10
39秒前
40秒前
成太发布了新的文献求助10
40秒前
47秒前
独特的板凳完成签到,获得积分10
49秒前
科研通AI5应助科研通管家采纳,获得10
51秒前
小蘑菇应助科研通管家采纳,获得10
51秒前
冰魂应助科研通管家采纳,获得10
51秒前
hyshen完成签到,获得积分10
51秒前
华仔应助科研通管家采纳,获得10
51秒前
英姑应助科研通管家采纳,获得10
52秒前
JamesPei应助科研通管家采纳,获得10
52秒前
52秒前
共享精神应助科研通管家采纳,获得10
52秒前
52秒前
52秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778404
求助须知:如何正确求助?哪些是违规求助? 3324131
关于积分的说明 10217172
捐赠科研通 3039355
什么是DOI,文献DOI怎么找? 1667977
邀请新用户注册赠送积分活动 798463
科研通“疑难数据库(出版商)”最低求助积分说明 758385