电池(电)
材料科学
锂(药物)
锂离子电池
鉴定(生物学)
加速老化
电化学储能
预测建模
计算机科学
可靠性工程
电化学
电极
机器学习
工程类
复合材料
热力学
医学
功率(物理)
物理
植物
生物
内分泌学
化学
物理化学
超级电容器
作者
Shicong Ding,Yiding Li,Haifeng Dai,Li Wang,Xiangming He
标识
DOI:10.1002/aenm.202370160
摘要
Cell Aging In article number 2301452, Haifeng Dai, Xiangming He and co-workers review and summarize the material and cell level aging mechanisms in different usage scenarios, the development of coupled electrochemical-aging models, and machine learning-assisted aging prediction, with an emphasis on the electrode balance and mechanistic descriptors to achieve the most precise battery lifetime prediction. A model framework for accurate cell aging prediction is provided to material and battery developers.
科研通智能强力驱动
Strongly Powered by AbleSci AI