Statistically learning the functional landscape of microbial communities

丰度(生态学) 生态学 功能(生物学) 社区 航程(航空) 集合(抽象数据类型) 生物量(生态学) 生物 植物群落 计算机科学 生态系统 进化生物学 物种丰富度 工程类 程序设计语言 航空航天工程
作者
Abigail Skwara,Karna Gowda,Mahmoud Yousef,Juan Díaz‐Colunga,Arjun S. Raman,Álvaro Sánchez,Mikhail Tikhonov,Seppe Kuehn
出处
期刊:Nature Ecology and Evolution [Nature Portfolio]
卷期号:7 (11): 1823-1833 被引量:42
标识
DOI:10.1038/s41559-023-02197-4
摘要

Microbial consortia exhibit complex functional properties in contexts ranging from soils to bioreactors to human hosts. Understanding how community composition determines function is a major goal of microbial ecology. Here we address this challenge using the concept of community-function landscapes—analogues to fitness landscapes—that capture how changes in community composition alter collective function. Using datasets that represent a broad set of community functions, from production/degradation of specific compounds to biomass generation, we show that statistically inferred landscapes quantitatively predict community functions from knowledge of species presence or absence. Crucially, community-function landscapes allow prediction without explicit knowledge of abundance dynamics or interactions between species and can be accurately trained using measurements from a small subset of all possible community compositions. The success of our approach arises from the fact that empirical community-function landscapes appear to be not rugged, meaning that they largely lack high-order epistatic contributions that would be difficult to fit with limited data. Finally, we show that this observation holds across a wide class of ecological models, suggesting community-function landscapes can be efficiently inferred across a broad range of ecological regimes. Our results open the door to the rational design of consortia without detailed knowledge of abundance dynamics or interactions. Landscapes of microbial community function inferred statistically from a broad range of datasets can predict community function on the basis on presence and absence data, without the need for abundance dynamics or interaction data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小安发布了新的文献求助10
刚刚
echo发布了新的文献求助10
1秒前
打打应助务实的犀牛采纳,获得10
1秒前
NN发布了新的文献求助30
2秒前
Haibrar发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得30
5秒前
5秒前
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
udA发布了新的文献求助10
6秒前
今后应助科研通管家采纳,获得10
6秒前
J324完成签到,获得积分10
6秒前
8秒前
8秒前
ding应助zyx采纳,获得10
10秒前
王羿曈发布了新的文献求助10
11秒前
CC完成签到 ,获得积分10
12秒前
xiaxiao完成签到,获得积分0
13秒前
wangrch6完成签到,获得积分10
13秒前
13秒前
14秒前
可爱的函函应助Research采纳,获得30
14秒前
16秒前
16秒前
SciGPT应助lang采纳,获得10
16秒前
核桃应助Qiangzai采纳,获得10
17秒前
大爱仙尊发布了新的文献求助10
18秒前
123完成签到 ,获得积分10
19秒前
udA完成签到,获得积分20
20秒前
续篇发布了新的文献求助10
21秒前
J324关注了科研通微信公众号
21秒前
zyx发布了新的文献求助10
22秒前
今后应助虚心乌龟采纳,获得10
23秒前
cc应助wise111采纳,获得10
24秒前
碎碎念s完成签到,获得积分10
26秒前
27秒前
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268031
求助须知:如何正确求助?哪些是违规求助? 3799218
关于积分的说明 11908675
捐赠科研通 3446112
什么是DOI,文献DOI怎么找? 1890537
邀请新用户注册赠送积分活动 941240
科研通“疑难数据库(出版商)”最低求助积分说明 845509