Statistically learning the functional landscape of microbial communities

丰度(生态学) 生态学 功能(生物学) 社区 航程(航空) 集合(抽象数据类型) 生物量(生态学) 生物 植物群落 计算机科学 生态系统 进化生物学 物种丰富度 工程类 程序设计语言 航空航天工程
作者
Abigail Skwara,Karna Gowda,Mahmoud Yousef,Juan Díaz‐Colunga,Arjun S. Raman,Álvaro Sánchez,Mikhail Tikhonov,Seppe Kuehn
出处
期刊:Nature Ecology and Evolution [Nature Portfolio]
卷期号:7 (11): 1823-1833 被引量:42
标识
DOI:10.1038/s41559-023-02197-4
摘要

Microbial consortia exhibit complex functional properties in contexts ranging from soils to bioreactors to human hosts. Understanding how community composition determines function is a major goal of microbial ecology. Here we address this challenge using the concept of community-function landscapes—analogues to fitness landscapes—that capture how changes in community composition alter collective function. Using datasets that represent a broad set of community functions, from production/degradation of specific compounds to biomass generation, we show that statistically inferred landscapes quantitatively predict community functions from knowledge of species presence or absence. Crucially, community-function landscapes allow prediction without explicit knowledge of abundance dynamics or interactions between species and can be accurately trained using measurements from a small subset of all possible community compositions. The success of our approach arises from the fact that empirical community-function landscapes appear to be not rugged, meaning that they largely lack high-order epistatic contributions that would be difficult to fit with limited data. Finally, we show that this observation holds across a wide class of ecological models, suggesting community-function landscapes can be efficiently inferred across a broad range of ecological regimes. Our results open the door to the rational design of consortia without detailed knowledge of abundance dynamics or interactions. Landscapes of microbial community function inferred statistically from a broad range of datasets can predict community function on the basis on presence and absence data, without the need for abundance dynamics or interaction data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ANmin完成签到 ,获得积分10
1秒前
hfhyf发布了新的文献求助10
1秒前
BINbin完成签到,获得积分10
2秒前
Jian发布了新的文献求助10
3秒前
3秒前
无花果应助日升月采纳,获得10
3秒前
柯南发布了新的文献求助10
3秒前
酷波er应助亮总采纳,获得10
3秒前
yaosan发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
5秒前
yingying发布了新的文献求助10
5秒前
Jenkin发布了新的文献求助10
5秒前
6秒前
大力的寻琴完成签到,获得积分10
6秒前
热情曼云发布了新的文献求助10
7秒前
旺仔牛奶糖完成签到,获得积分20
8秒前
qq.com发布了新的文献求助10
8秒前
揽星色完成签到,获得积分10
8秒前
8秒前
桐桐应助柯南采纳,获得10
8秒前
言卓发布了新的文献求助10
8秒前
9秒前
9秒前
Jian完成签到,获得积分10
9秒前
9秒前
开心小霸王完成签到,获得积分10
10秒前
yc发布了新的文献求助10
10秒前
宁宁宁发布了新的文献求助10
10秒前
yaosan完成签到,获得积分10
11秒前
12秒前
mm_zxh完成签到,获得积分10
13秒前
13秒前
无限的FF发布了新的文献求助10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271