Accuracy of liver metastasis detection and characterization: Dual-energy CT versus single-energy CT with deep learning reconstruction

医学 麦克内马尔试验 放射科 图像质量 霍恩斯菲尔德秤 病变 活检 接收机工作特性 核医学 计算机断层摄影术 病理 内科学 人工智能 统计 数学 计算机科学 图像(数学)
作者
Corey T. Jensen,Vincenzo K. Wong,Nicolaus A. Wagner‐Bartak,Xinming Liu,Renjith Padmanabhan Nair Sobha,Jia Sun,Gauruv S Likhari,Shiva Gupta
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:168: 111121-111121 被引量:17
标识
DOI:10.1016/j.ejrad.2023.111121
摘要

To assess whether image quality differences between SECT (single-energy CT) and DECT (dual-energy CT 70 keV) with equivalent radiation doses result in altered detection and characterization accuracy of liver metastases when using deep learning image reconstruction (DLIR), and whether DECT spectral curve usage improves accuracy of indeterminate lesion characterization.In this prospective Health Insurance Portability and Accountability Act-compliant study (March through August 2022), adult men and non-pregnant adult women with biopsy-proven colorectal cancer and liver metastases underwent SECT (120 kVp) and a DECT (70 keV) portovenous abdominal CT scan using DLIR in the same breath-hold (Revolution CT ES; GE Healthcare). Participants were excluded if consent could not be obtained, if there were nonequivalent radiation doses between the two scans, or if the examination was cancelled/rescheduled. Three radiologists independently performed lesion detection and characterization during two separate sessions (SECT DLIRmedium and DECT DLIRhigh) as well as reported lesion confidence and overall image quality. Hounsfield units were measured. Spectral HU curves were provided for any lesions rated as indeterminate. McNemar's test was used to test the marginal homogeneity in terms of diagnostic sensitivity, accuracy and lesion detection. A generalized estimating equation method was used for categorical outcomes.30 participants (mean age, 58 years ± 11, 21 men) were evaluated. Mean CTDIvol was 34 mGy for both scans. 141 lesions (124 metastases, 17 benign) with a mean size of 0.8 cm ± 0.3 cm were identified. High scores for image quality (scores of 4 or 5) were not significantly different between DECT (N = 71 out of 90 total scores from the three readers) and SECT (N = 62) (OR, 2.01; 95% CI:0.89, 4.57; P = 0.093). Equivalent image noise to SECT DLIRmed (HU SD 10 ± 2) was obtained with DECT DLIRhigh (HU SD 10 ± 3) (P = 1). There was no significant difference in lesion detection between DECT and SECT (140/141 lesions) (99.3%; 95% CI:96.1%, 100%).The mean lesion confidence scores by each reader were 4.2 ± 1.3, 3.9 ± 1.0, and 4.8 ± 0.8 for SECT and 4.1 ± 1.4, 4.0 ± 1.0, and 4.7 ± 0.8 for DECT (odds ratio [OR], 0.83; 95% CI: 0.62, 1.11; P = 0.21). Small lesion (≤5mm) characterization accuracy on SECT and DECT was 89.1% (95% CI:76.4%, 96.4%; 41/46) and 84.8% (71.1%, 93.7%; 39/46), respectively (P = 0.41). Use of spectral HU lesion curves resulted in 34 correct changes in characterizations and no mischaracterizations.DECT required a higher strength of DLIR to obtain equivalent noise compared to SECT DLIR. At equivalent radiation doses and image noise, there was no significant difference in subjective image quality or observer lesion performance between DECT (70 keV) and SECT. However, DECT spectral HU curves of indeterminate lesions improved characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净曼寒发布了新的文献求助10
1秒前
1秒前
3秒前
Cherry完成签到 ,获得积分10
3秒前
5秒前
li发布了新的文献求助10
6秒前
Yeteen完成签到,获得积分10
7秒前
7秒前
凌乱发布了新的文献求助10
7秒前
Xiaopan完成签到 ,获得积分10
9秒前
翟函完成签到,获得积分10
10秒前
黎敏完成签到,获得积分10
11秒前
阿楚发布了新的文献求助30
12秒前
玲青完成签到 ,获得积分10
13秒前
13秒前
英俊001完成签到 ,获得积分10
15秒前
巧克力牛奶配宫保鸡丁盖饭完成签到,获得积分10
15秒前
16秒前
Akim应助鸽子采纳,获得10
19秒前
cccc发布了新的文献求助10
20秒前
Janus完成签到,获得积分10
22秒前
22秒前
无花果应助阿楚采纳,获得30
22秒前
25秒前
严三笑发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
英俊的铭应助刘丽丹采纳,获得10
27秒前
潇洒的觅柔完成签到,获得积分10
29秒前
29秒前
purple1212发布了新的文献求助10
30秒前
LEIRUOXUAN发布了新的文献求助10
31秒前
wxyshare应助yanghaiyu采纳,获得10
32秒前
小鹿斑比完成签到 ,获得积分10
32秒前
懒虫儿坤完成签到,获得积分10
33秒前
捌懿完成签到,获得积分10
33秒前
36秒前
懒虫儿坤发布了新的文献求助10
36秒前
36秒前
丘比特应助AA18236931952采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123