Neural Network‐Enabled Multiparametric Impedance Signal Templating for High throughput Single‐Cell Deformability Cytometry Under Viscoelastic Extensional Flows

细胞仪 生物系统 分类 单元格排序 信号(编程语言) 生物医学工程 计算机科学 流式细胞术 电阻抗 材料科学 细胞 人工智能 纳米技术 模式识别(心理学) 化学 生物 物理 算法 程序设计语言 医学 生物化学 遗传学 量子力学
作者
Javad Jarmoshti,Abdullah‐Bin Siddique,Aditya Rane,Shaghayegh Mirhosseini,Sara J. Adair,Todd W. Bauer,Federica Caselli,Nathan S. Swami
出处
期刊:Small [Wiley]
标识
DOI:10.1002/smll.202407212
摘要

Abstract Cellular biophysical metrics exhibit systematic alterations during processes, such as metastasis and immune cell activation, which can be used to identify and separate live cell subpopulations for targeting drug screening. Image‐based biophysical cytometry under extensional flows can accurately quantify cell deformability based on cell shape alterations but needs extensive image reconstruction, which limits its inline utilization to activate cell sorting. Impedance cytometry can measure these cell shape alterations based on electric field screening, while its frequency response offers functional information on cell viability and interior structure, which are difficult to discern by imaging. Furthermore, 1‐D temporal impedance signal trains exhibit characteristic shapes that can be rapidly templated in near real‐time to extract single‐cell biophysical metrics to activate sorting. We present a multilayer perceptron neural network signal templating approach that utilizes raw impedance signals from cells under extensional flow, alongside its training with image metrics from corresponding cells to derive net electrical anisotropy metrics that quantify cell deformability over wide anisotropy ranges and with minimal errors from cell size distributions. Deformability and electrical physiology metrics are applied in conjunction on the same cell for multiparametric classification of live pancreatic cancer cells versus cancer associated fibroblasts using the support vector machine model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土拨鼠完成签到,获得积分10
刚刚
小努力完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
4秒前
布吉岛发布了新的文献求助10
5秒前
zhaoxi完成签到,获得积分10
6秒前
甜甜芾应助白问安采纳,获得10
6秒前
Xiao_Ye完成签到,获得积分10
6秒前
小努力发布了新的文献求助10
7秒前
7秒前
复杂大象发布了新的文献求助10
8秒前
单薄的亦瑶完成签到 ,获得积分10
9秒前
SciGPT应助myl采纳,获得10
10秒前
环秋完成签到,获得积分10
10秒前
10秒前
大模型应助秦pale采纳,获得10
11秒前
共享精神应助侦察兵采纳,获得10
12秒前
搜集达人应助Math4396采纳,获得10
12秒前
shenqian完成签到,获得积分10
13秒前
DAKE发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
21秒前
完美世界应助Hiker采纳,获得10
21秒前
22秒前
清枫发布了新的文献求助10
23秒前
23秒前
子车茗应助fox采纳,获得20
23秒前
24秒前
甜甜芾应助LTTY采纳,获得10
24秒前
25秒前
Alladin完成签到,获得积分10
27秒前
侦察兵发布了新的文献求助10
27秒前
科研通AI5应助值雨采纳,获得30
28秒前
28秒前
syl发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150