CoD-MIL: Chain-of-Diagnosis Prompting Multiple Instance Learning for Whole Slide Image Classification

人工智能 计算机科学 上下文图像分类 计算机视觉 图像(数学) 模式识别(心理学) 图像处理 图像分割 医学影像学
作者
Jiangbo Shi,Chen Li,Tieliang Gong,Chunbao Wang,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (3): 1218-1229 被引量:5
标识
DOI:10.1109/tmi.2024.3485120
摘要

Multiple instance learning (MIL) has emerged as a prominent paradigm for processing the whole slide image with pyramid structure and giga-pixel size in digital pathology. However, existing attention-based MIL methods are primarily trained on the image modality and a pre-defined label set, leading to limited generalization and interpretability. Recently, vision language models (VLM) have achieved promising performance and transferability, offering potential solutions to the limitations of MIL-based methods. Pathological diagnosis is an intricate process that requires pathologists to examine the WSI step-by-step. In the field of natural language process, the chain-of-thought (CoT) prompting method is widely utilized to imitate the human reasoning process. Inspired by the CoT prompt and pathologists' clinic knowledge, we propose a chain-of-diagnosis prompting multiple instance learning (CoD-MIL) framework for whole slide image classification. Specifically, the chain-of-diagnosis text prompt decomposes the complex diagnostic process in WSI into progressive sub-processes from low to high magnification. Additionally, we propose a text-guided contrastive masking module to accurately localize the tumor region by masking the most discriminative instances and introducing the guidance of normal tissue texts in a contrastive way. Extensive experiments conducted on three real-world subtyping datasets demonstrate the effectiveness and superiority of CoD-MIL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助木槿采纳,获得10
1秒前
1313发布了新的文献求助10
1秒前
1秒前
1秒前
魁梧的恶天完成签到,获得积分10
2秒前
传奇3应助小张同学采纳,获得10
3秒前
迟到的白昼完成签到,获得积分20
4秒前
4秒前
隐形曼青应助xu采纳,获得10
7秒前
小蘑菇应助weizhao采纳,获得10
7秒前
7秒前
LLZ发布了新的文献求助10
8秒前
POLARIL发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
Jasper应助野性的沉鱼采纳,获得10
11秒前
11秒前
冷傲书萱应助11采纳,获得10
12秒前
元谷雪发布了新的文献求助10
12秒前
hangli发布了新的文献求助10
13秒前
13秒前
爆米花应助积极的黑猫采纳,获得10
13秒前
破茧完成签到,获得积分10
13秒前
14秒前
星沉静默完成签到 ,获得积分10
14秒前
老弟需要帮助完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
yuye_Liu发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
大个应助mzm采纳,获得10
15秒前
15秒前
15秒前
15秒前
嗯对发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761057
求助须知:如何正确求助?哪些是违规求助? 5527282
关于积分的说明 15398807
捐赠科研通 4897632
什么是DOI,文献DOI怎么找? 2634274
邀请新用户注册赠送积分活动 1582397
关于科研通互助平台的介绍 1537744