Thermokarst landslides susceptibility evaluation across the permafrost region of the central Qinghai-Tibet Plateau: Integrating a machine learning model with InSAR technology

永久冻土 山崩 热岩溶 遥感 仰角(弹道) 归一化差异植被指数 干涉合成孔径雷达 植被(病理学) 激光雷达 高原(数学) 地质学 活动层 环境科学 地形 土壤科学 地貌学 自然地理学 合成孔径雷达 地图学 气候变化 图层(电子) 地理 医学 数学分析 海洋学 化学 几何学 数学 有机化学 病理 薄膜晶体管
作者
Fei Wang,Zhi Wen,Qiang Gao,Qihao Yu,Desheng Li,Liangzhi Chen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:642: 131800-131800 被引量:5
标识
DOI:10.1016/j.jhydrol.2024.131800
摘要

Thermokarst landslides (TLs), which are made up of retrogressive thaw slumps (RTSs) and active-layer detachments slides (ALDSs), are quickly increasing in the central Qinghai-Tibet Plateau (QTP) permafrost area. TLs induce many environmental problems and threaten the safety of infrastructure. A landslide susceptibility map is crucial to prevent the negative impacts of these landslides. However, traditional thermokarst landslides susceptibility (TLS) evaluations do not consider real-time surface deformation information. Therefore, we propose a novel method that integrates a conventional machine learning model with ground surface deformation. Nine influencing factors, including slope, normalized difference vegetation index, elevation, precipitation, thawing degree days, soil content, active layer thickness, water content, and vegetation type were selected based on the q-index detector, and support vector machine was employed to obtain an initial model (IM). We obtained surface deformation in the study area using the enhanced Small Baseline Subset (SBAS) method. The accuracy of the InSAR results was validated through comparison with data from two field monitoring cross-sections. Subsequently, we established an integrated model (ITM) by combining the initial model with surface deformation using the contribution matrix, and confirmed the fusion model's higher rationality and accuracy through comparison with the IM. Furthermore, we examined the impact of the quadtree segmentation method on atmospheric correction and validated the TLS results obtained using the ITM with high-resolution optical remote sensing imagery from GF6. Finally, the influencing factors and distribution characteristics of TLS was analyzed, and the results indicated that climatic conditions are the primary factors affecting the distribution of TLS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唯心如意完成签到,获得积分10
1秒前
卡卡完成签到 ,获得积分10
1秒前
科研通AI2S应助正直的半梅采纳,获得10
1秒前
3秒前
6秒前
了晨完成签到 ,获得积分10
7秒前
Betty发布了新的文献求助10
7秒前
Jade张完成签到,获得积分10
10秒前
Matrix完成签到,获得积分10
11秒前
帝国超级硕士完成签到,获得积分10
11秒前
Reedy完成签到,获得积分10
12秒前
小黑猴ps完成签到,获得积分10
13秒前
LiuXiaocui发布了新的文献求助10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得30
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
狂野菠萝应助科研通管家采纳,获得10
15秒前
香蕉觅云应助胖飞飞采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
善学以致用应助科研通管家采纳,获得100
15秒前
15秒前
田様应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
15秒前
九月完成签到,获得积分10
15秒前
852应助科研通管家采纳,获得30
16秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
情怀应助科研通管家采纳,获得10
16秒前
领导范儿应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
16秒前
852应助科研通管家采纳,获得10
16秒前
17秒前
zzt完成签到,获得积分10
20秒前
21秒前
Bingbingbing发布了新的文献求助10
21秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845700
求助须知:如何正确求助?哪些是违规求助? 3387942
关于积分的说明 10551187
捐赠科研通 3108596
什么是DOI,文献DOI怎么找? 1712953
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891