已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dynamical Attention Hypergraph Convolutional Network for Group Activity Recognition

超图 计算机科学 成对比较 特征(语言学) 相似性(几何) 构造(python库) 理论计算机科学 人工智能 卷积(计算机科学) 聚类分析 模式识别(心理学) 图像(数学) 人工神经网络 数学 语言学 哲学 离散数学 程序设计语言
作者
Xiaolin Zhu,Dongli Wang,Jianxun Li,Rui Su,Qin Wan,Yan Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tnnls.2024.3422265
摘要

Recently, group activity recognition (GAR) has drawn growing interests in video analysis and computer vision communities. The current models of GAR tasks are often impractical in that they suppose that all interactions between actors are pairwise, which only models and leverages part of the information in real entire interactions. Motivated by this, we design a distinct dynamical attention hypergraph convolutional network framework, referred to as DAHGCN, for precise GAR, modeling the entire interactions and capturing the high-order relationships among involved actors in a real-life scenario. Specifically, to learn complementary feature representations for fine-grained GAR, a multilevel feature descriptor (MLFD) module is proposed. Furthermore, for learning higher order interaction relationships, we construct a DAHGCN to accommodate complex group interactions, which can dynamically change the topology of the hypergraph and learn these key representations by virtue of the "similarity-based shared nearest-neighbor (SSNN) clustering" and "attention mechanisms" on hypergraph. Finally, a multiscale temporal convolution (MSTC) module is utilized to explore various long-range temporal dynamic correlations across different frames. In addition, comprehensive experiments on three commonly used GAR datasets clearly demonstrate that, when compared with the state-of-the-art methods, our proposed method can achieve the most optimal performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小锤完成签到 ,获得积分10
3秒前
7秒前
Freedom_1996完成签到,获得积分10
10秒前
沉静的水香完成签到,获得积分10
11秒前
12秒前
DrJQiao发布了新的文献求助10
13秒前
shiluodeqiou完成签到 ,获得积分10
14秒前
研友_VZG7GZ应助131949采纳,获得10
15秒前
超表面发布了新的文献求助10
20秒前
21秒前
shiluodeqiou关注了科研通微信公众号
21秒前
杨沛儒完成签到,获得积分10
26秒前
风华正茂完成签到,获得积分10
28秒前
29秒前
杨沛儒发布了新的文献求助30
32秒前
34秒前
34秒前
131949发布了新的文献求助10
35秒前
Destiny完成签到 ,获得积分10
35秒前
涛1完成签到 ,获得积分10
35秒前
赵赵完成签到 ,获得积分10
36秒前
筱汐完成签到,获得积分10
37秒前
乐乐应助GamePlayer采纳,获得10
37秒前
酷波er应助GamePlayer采纳,获得10
37秒前
乐乐应助GamePlayer采纳,获得10
37秒前
完美世界应助GamePlayer采纳,获得10
37秒前
bkagyin应助GamePlayer采纳,获得10
37秒前
FashionBoy应助GamePlayer采纳,获得10
37秒前
汉堡包应助GamePlayer采纳,获得10
37秒前
SciGPT应助GamePlayer采纳,获得10
37秒前
上官若男应助GamePlayer采纳,获得10
37秒前
华仔应助GamePlayer采纳,获得10
37秒前
斯文败类应助131949采纳,获得10
38秒前
华仔应助李fr采纳,获得10
40秒前
张大帅发布了新的文献求助10
41秒前
41秒前
lnx发布了新的文献求助10
41秒前
BetterH完成签到 ,获得积分10
41秒前
小马甲应助超表面采纳,获得10
42秒前
慕山完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4539799
求助须知:如何正确求助?哪些是违规求助? 3973939
关于积分的说明 12309788
捐赠科研通 3640876
什么是DOI,文献DOI怎么找? 2004787
邀请新用户注册赠送积分活动 1040247
科研通“疑难数据库(出版商)”最低求助积分说明 929398