FL-YOLOv8: a SAR ship detection model based on improved YOLOv8

计算机科学 合成孔径雷达 增采样 特征(语言学) 人工智能 特征提取 水准点(测量) 模式识别(心理学) GSM演进的增强数据速率 目标检测 计算机视觉 图像(数学) 地质学 哲学 语言学 大地测量学
作者
jiabao wei,hongmin ren
标识
DOI:10.1117/12.3038061
摘要

Synthetic Aperture Radar (SAR) imagery finds extensive applications in both military and civilian domains due to its inherent advantages, such as all-weather capability, high resolution, and complete coverage. However, SAR images encounter several limitations, including unclear edge profile information, multi-scale representation, high sparsity, and a high percentage of small target ships. Consequently, these factors contribute to relatively low accuracy, poor model positioning capabilities, and difficulty in feature extraction in target detection. To overcome this limitation, the present study introduces a novel SAR ship detection method, FL-YOLOV8. It enhances the 160X160 detection feature map by incorporating FHP(four-head prediction) to identify targets larger than 4X4 and replaces the original detection head with LSCDH(lightweight shared convolutional detection head). First, due to the relatively large downsampling multiples in yolov8, it becomes challenging to capture the feature information of small targets. By incorporating a feature head, it becomes feasible to integrate shallow and deep feature information. Second, LSCDH enhances the feature representation of the model, accommodates inputs at various scales, and minimizes both the number of parameters and computational effort. Furthermore, comprehensive experiments conducted on the benchmark dataset HRSID demonstrate the superior performance of FL-YOLOV8 in ship detection, achieving an accuracy of 92.8%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
邵初蓝发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
zzzkk完成签到,获得积分20
5秒前
6秒前
SYLH应助guozizi采纳,获得20
6秒前
SYLH应助guozizi采纳,获得20
7秒前
现代鸣凤发布了新的文献求助10
7秒前
QZWX完成签到,获得积分10
7秒前
小白应助chen采纳,获得10
7秒前
yscjlxw547完成签到,获得积分20
8秒前
kxmmm发布了新的文献求助10
9秒前
Owen应助乃惜采纳,获得10
10秒前
10秒前
11秒前
一一得一发布了新的文献求助10
11秒前
冰魂应助柚吱采纳,获得10
12秒前
13秒前
14秒前
NekoAbismo发布了新的文献求助20
14秒前
Voskov完成签到,获得积分10
14秒前
Jaaay发布了新的文献求助10
15秒前
现代鸣凤完成签到,获得积分10
15秒前
隐形元绿发布了新的文献求助20
15秒前
16秒前
狂野的远锋完成签到,获得积分10
17秒前
MXene发布了新的文献求助10
17秒前
felix发布了新的文献求助30
17秒前
顺利绮波发布了新的文献求助10
18秒前
东方欲晓发布了新的文献求助10
19秒前
20秒前
大模型应助一一得一采纳,获得10
20秒前
20秒前
SciGPT应助jue采纳,获得10
20秒前
sui完成签到,获得积分10
21秒前
pcr163应助llan采纳,获得30
21秒前
小小发布了新的文献求助10
21秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888423
求助须知:如何正确求助?哪些是违规求助? 3430788
关于积分的说明 10771396
捐赠科研通 3155825
什么是DOI,文献DOI怎么找? 1742679
邀请新用户注册赠送积分活动 841291
科研通“疑难数据库(出版商)”最低求助积分说明 785864