已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention Transfer in Heterogeneous Networks Fusion for Drug Repositioning

计算机科学 融合 药物重新定位 人工智能 药品 医学 药理学 哲学 语言学
作者
Xinguo Lu,Fengxu Sun,Jinxin Li,Jingjing Ruan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (11): 7820-7829 被引量:2
标识
DOI:10.1109/jbhi.2024.3486730
摘要

Computational drug repositioning which accelerates the process of drug development is able to reduce the cost in terms of time and money dramatically which brings promising and broad perspectives for the treatment of complex diseases. Heterogeneous networks fusion has been proposed to improve the performance of drug repositioning. Due to the difference and the specificity including the network structure and the biological function among different biological networks, it poses serious challenge on how to represent drug features and construct drug-disease associations in drug repositioning. Therefore, we proposed a novel drug repositioning method (ATDR) that employed attention transfer across different networks constructed by the deeply represented features integrated from biological networks to implement the disease-drug association prediction. Specifically, we first implemented the drug feature characterization with the graph representation of random surfing for different biological networks, respectively. Then, the drug network of deep feature representation was constructed with the aggregated drug informative features acquired by the multi-modal deep autoencoder on heterogeneous networks. Subsequently, we accomplished the drug-disease association prediction by transferring attention from the drug network to the drug-disease interaction network. We performed comprehensive experiments on different datasets and the results illustrated the outperformance of ATDR compared with other baseline methods and the predicted potential drug-disease interactions could aid in the drug development for disease treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
aojl90发布了新的文献求助10
刚刚
开拖拉机的芍药完成签到 ,获得积分10
1秒前
30完成签到 ,获得积分10
1秒前
2秒前
CCTwoo完成签到,获得积分10
2秒前
5秒前
CCTwoo发布了新的文献求助10
7秒前
盛事不朽完成签到 ,获得积分10
8秒前
Shaohan完成签到,获得积分10
9秒前
CodeCraft应助NX采纳,获得10
10秒前
少卿发布了新的文献求助10
12秒前
苗龙伟完成签到 ,获得积分10
13秒前
背后如之完成签到,获得积分10
14秒前
01259完成签到 ,获得积分10
17秒前
19秒前
19秒前
愤怒的水绿完成签到,获得积分10
20秒前
cqz完成签到 ,获得积分10
22秒前
24秒前
25秒前
25秒前
Queena发布了新的文献求助10
26秒前
Tom2077完成签到,获得积分10
27秒前
香蕉觅云应助甜蜜的大树采纳,获得10
28秒前
光亮千易完成签到,获得积分10
29秒前
惠香香的完成签到,获得积分10
30秒前
31秒前
情怀应助一叶知秋采纳,获得10
31秒前
跳跃寄松发布了新的文献求助10
31秒前
cai发布了新的文献求助10
34秒前
36秒前
甜蜜的大树完成签到,获得积分10
38秒前
田様应助sterlingwang采纳,获得30
39秒前
21_xxrr完成签到 ,获得积分10
41秒前
汉堡包应助可乐加冰采纳,获得10
41秒前
liao应助科研通管家采纳,获得10
41秒前
熬夜波比应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
42秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705664
求助须知:如何正确求助?哪些是违规求助? 5165426
关于积分的说明 15245949
捐赠科研通 4859449
什么是DOI,文献DOI怎么找? 2607801
邀请新用户注册赠送积分活动 1558895
关于科研通互助平台的介绍 1516454