Artificial intelligence for automated left ventricular systolic dysfunction detection using a wearable cardiac patch incorporated with synchronized phonocardiogram and electrocardiogram

心音图 医学 心脏病学 内科学 可穿戴计算机 心电图 嵌入式系统 计算机科学
作者
W L Zhang,Bo Song,Qingjie Huang,W W Quan,R Y Zhang
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.3551
摘要

Abstract Background Left ventricular systolic dysfunction (LVSD) is characterized by a reduced left ventricular ejection fraction (LVEF) and is associated with three times the risk of developing Heart failure (HF). We aimed to test an artificial intelligence (AI) algorithm applied to synchronized phonocardiography (PCG) and electrocardiography (ECG) signals, recorded with a wearable device, to validate its potential as a screening tool for LVSD. Methods Using ECG and PCG data collected from 1960 admitted patients in a hospital, we trained an AI algorithm to detect the LVSD. There are two ways of defining LVSD, one group is defined by LVEF <50% and the other is defined by LVEF 40% as measured by echocardiography. The AI algorithm followed a two-step detection structure. In the first phase, ECG signals were processed by wavelet denoising and baseline wander correction, and PCG signals were converted to the frequency domain via wavelet transformation. We developed a 1D CNN-based U-Net variant model to pinpoint electromechanical activation time (EMAT). Addressing the challenge of processing multimodal signals, we devised a contrastive learning approach that mandates the encoders for different modalities to generate embeddings within the same feature space. This trained encoder, along with the decoder in U-Net, is subsequently fine-tuned for EMAT detection. The AI-EMAT% was obtained by adjusting detected EMAT based on RR interval. For the second phase, random forest regression is used to estimate LVEF, incorporating features such as AI-EMAT% and clinical data, including age and gender. For LVSD detection, we evaluated the performance of methods by bifurcating AI-estimated LVEF% (AI-predict LVEF%) based on thresholds of 40% and 50%, and by directly estimating AI-EMAT% cutoff. The evaluation of LVSD detection algorithm, conducted via 2-fold cross-validation, involves dividing the dataset into two subsets, with each alternately serving as training and testing sets to ensure a fair assessment. Results We recruited 1960 patients (1430 [72.96%] male). 357 (18.21%) had an ejection fraction of 50% or lower, and 157 (8.01%) had an ejection fraction of 40% or lower. In detecting LVSD of LVEF<50%, AI-EMAT% yielded an AUROC of 0.86, sensitivity of 73.7%, and specificity of 80.7%. While AI-predict LVEF% approach resulted in an AUROC of 0.89, sensitivity of 81.8%, and specificity of 81.5%. In detecting LVSD of LVEF<40%, AI-EMAT% yielded an AUROC of 0.89, sensitivity of 85.4%, and specificity of 76.0%. While AI-predict LVEF% outputs resulted in an AUROC of 0.91, sensitivity of 92.4%, and specificity of 76.8%. Conclusions We developed an automated algorithm to detect LVSD using a wearable device that incorporated synchronized PCG and ECG signals, demonstrating robust performance across different subgroups. This approach represents a strategy for automated screening of LV systolic dysfunction, particularly beneficial in resource-limited settings.Baseline and AUROCAI algorithm

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘南完成签到,获得积分10
1秒前
1秒前
123456完成签到,获得积分10
2秒前
2秒前
小羊发布了新的文献求助10
5秒前
miss发布了新的文献求助10
6秒前
Yangshu发布了新的文献求助10
6秒前
7秒前
ycxy给ycxy的求助进行了留言
7秒前
8秒前
8秒前
8秒前
9秒前
Lion完成签到,获得积分20
9秒前
糊涂的傲蕾完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
吴彦祖发布了新的文献求助10
10秒前
12秒前
Lion发布了新的文献求助10
12秒前
飞飞飞发布了新的文献求助10
13秒前
飘逸之玉发布了新的文献求助10
13秒前
15秒前
DouBo发布了新的文献求助10
15秒前
16秒前
17秒前
19秒前
19秒前
19秒前
小羊发布了新的文献求助10
20秒前
万能图书馆应助Yangshu采纳,获得10
20秒前
学术智子完成签到,获得积分10
21秒前
叶叶叶发布了新的文献求助10
21秒前
hute完成签到 ,获得积分10
21秒前
小陈完成签到,获得积分10
22秒前
酷波er应助liufang采纳,获得10
22秒前
回英伦发布了新的文献求助10
22秒前
李联洪完成签到,获得积分10
23秒前
zy发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
苯丙氨酸解氨酶的祖先序列重建及其催化性能 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4846688
求助须知:如何正确求助?哪些是违规求助? 4146626
关于积分的说明 12842159
捐赠科研通 3893487
什么是DOI,文献DOI怎么找? 2140206
邀请新用户注册赠送积分活动 1160081
关于科研通互助平台的介绍 1060417