直方图
增殖指数
宫颈癌
索引(排版)
磁共振弥散成像
高斯分布
扩散
计算机科学
医学
病理
模式识别(心理学)
癌症
人工智能
放射科
图像(数学)
内科学
化学
免疫组织化学
物理
磁共振成像
万维网
计算化学
热力学
作者
Yun Su,Kunjie Zeng,Zhuoheng Yan,Xiaojun Yang,Lingjie Yang,Lu Yang,Riyu Han,Fengqiong Huang,Hong Deng,Xiaohui Duan
摘要
The prognosis for patients with cervical cancer (CC) is strongly correlated with the Ki-67 proliferation index (PI). However, the Ki-67 PI obtained through biopsy has certain limitations. The non-Gaussian distribution diffusion model of magnetic resonance imaging (MRI) may play an important role in characterizing tissue heterogeneity. At present, there are limited data available concerning the prediction of Ki-67 PI using models based on histogram features of non-Gaussian diffusion distribution. This study aimed to determine whether preoperative histogram features from multiple non-Gaussian models of diffusion-weighted imaging can predict the Ki-67 PI in patients with CC.
科研通智能强力驱动
Strongly Powered by AbleSci AI