The Role of Artificial Intelligence in Predicting Optic Neuritis Subtypes From Ocular Fundus Photographs

医学 视神经炎 髓鞘少突胶质细胞糖蛋白 眼底(子宫) 多发性硬化 视神经脊髓炎 血清学 病因学 回顾性队列研究 疾病 眼科 病理 免疫学 抗体 实验性自身免疫性脑脊髓炎
作者
Étienne Bénard-Séguin,Christopher Nielsen,Abdullah Sarhan,Abdullah Al-Ani,Antoine Sylvestre-Bouchard,Derek Waldner,Lindsey B. De Lott,Suresh Subramaniam,Fiona Costello
出处
期刊:Journal of Neuro-ophthalmology [Lippincott Williams & Wilkins]
卷期号:44 (4): 462-468 被引量:2
标识
DOI:10.1097/wno.0000000000002229
摘要

Background: Optic neuritis (ON) is a complex clinical syndrome that has diverse etiologies and treatments based on its subtypes. Notably, ON associated with multiple sclerosis (MS ON) has a good prognosis for recovery irrespective of treatment, whereas ON associated with other conditions including neuromyelitis optica spectrum disorders or myelin oligodendrocyte glycoprotein antibody–associated disease is often associated with less favorable outcomes. Delay in treatment of these non-MS ON subtypes can lead to irreversible vision loss. It is important to distinguish MS ON from other ON subtypes early, to guide appropriate management. Yet, identifying ON and differentiating subtypes can be challenging as MRI and serological antibody test results are not always readily available in the acute setting. The purpose of this study is to develop a deep learning artificial intelligence (AI) algorithm to predict subtype based on fundus photographs, to aid the diagnostic evaluation of patients with suspected ON. Methods: This was a retrospective study of patients with ON seen at our institution between 2007 and 2022. Fundus photographs (1,599) were retrospectively collected from a total of 321 patients classified into 2 groups: MS ON (262 patients; 1,114 photographs) and non-MS ON (59 patients; 485 photographs). The dataset was divided into training and holdout test sets with an 80%/20% ratio, using stratified sampling to ensure equal representation of MS ON and non-MS ON patients in both sets. Model hyperparameters were tuned using 5-fold cross-validation on the training dataset. The overall performance and generalizability of the model was subsequently evaluated on the holdout test set. Results: The receiver operating characteristic (ROC) curve for the developed model, evaluated on the holdout test dataset, yielded an area under the ROC curve of 0.83 (95% confidence interval [CI], 0.72–0.92). The model attained an accuracy of 76.2% (95% CI, 68.4–83.1), a sensitivity of 74.2% (95% CI, 55.9–87.4) and a specificity of 76.9% (95% CI, 67.6–85.0) in classifying images as non-MS–related ON. Conclusions: This study provides preliminary evidence supporting a role for AI in differentiating non-MS ON subtypes from MS ON. Future work will aim to increase the size of the dataset and explore the role of combining clinical and paraclinical measures to refine deep learning models over time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小小新完成签到,获得积分10
1秒前
1秒前
wayne发布了新的文献求助10
1秒前
2秒前
田晓丹完成签到,获得积分20
2秒前
2秒前
3秒前
斑点完成签到,获得积分10
3秒前
lhn发布了新的文献求助10
5秒前
zrs发布了新的文献求助10
5秒前
田晓丹发布了新的文献求助10
5秒前
开心的向雁完成签到,获得积分10
6秒前
小墨鱼发布了新的文献求助10
7秒前
小小小新发布了新的文献求助10
9秒前
无花果应助zrs采纳,获得10
10秒前
12秒前
通通通发布了新的文献求助10
12秒前
内向秋寒发布了新的文献求助10
16秒前
cyj完成签到,获得积分10
16秒前
21秒前
大模型应助Fangfang采纳,获得10
22秒前
1111应助通通通采纳,获得10
23秒前
稀饭发布了新的文献求助10
25秒前
zzz发布了新的文献求助10
25秒前
啊娴仔完成签到,获得积分10
25秒前
乐乐应助小墨鱼采纳,获得30
25秒前
Saw完成签到,获得积分10
25秒前
1111应助目眩采纳,获得20
28秒前
lhn完成签到,获得积分10
30秒前
31秒前
31秒前
令狐冲发布了新的文献求助50
32秒前
35秒前
cdercder应助kdjm688采纳,获得10
36秒前
ShiRz发布了新的文献求助10
36秒前
芳芳发布了新的文献求助10
36秒前
小蘑菇应助震动的香旋采纳,获得30
40秒前
Fangfang发布了新的文献求助10
41秒前
42秒前
雨落瑾年完成签到 ,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777877
求助须知:如何正确求助?哪些是违规求助? 3323387
关于积分的说明 10214219
捐赠科研通 3038610
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304