Classification and analysis of fabric types for shirts: A comparison between virtual and real fabrics

材料科学 复合材料 织物
作者
Da Som Koo,Jae Sang An,Hye Jun Yoon
出处
期刊:Journal of Engineered Fibers and Fabrics [SAGE Publishing]
卷期号:19
标识
DOI:10.1177/15589250241262318
摘要

The 3D virtual simulation technology is widely applied in the fashion industry tasks, including product planning such as 3D sample work, design development, marketing, and display, enabling styling of virtual models for differentiation. Achieving a digital representation of fabrics that closely resembles actual materials requires additional information obtained through experiments, beyond basic fabric characteristics like fiber content, weight, and thickness. However, research reflecting changes in fabric properties is relatively lacking. Therefore, this study aims to propose criteria for the physical characteristics of shirt fabrics and compare fit variations of virtual garments based on fabric properties to enhance the usability of virtual garment simulation. Thus, we compared and analyzed the characteristics and draping properties of shirt fabrics using two different fabric testing methods, KES-FB and CLO Fabric Kit, and investigated correlations based on each measurement device. Additionally, virtual clothing was performed based on various fabrics to compare clothing suitability. Consequently, we classified fabrics into three clusters for each measurement method and confirmed the characteristics of each cluster. Furthermore, by visually comparing the fit of shirts based on fabric properties, we observed changes in clothing pressure and deformation rate among clusters. Therefore, we believe that the results of this study can assist designers with low proficiency in 3D virtual garment production when applying virtual materials to designs. These findings are expected to be valuable for utilizing 3D virtual clothing simulations in the fashion industry for online sales and marketing, as well as in the gaming industry for avatar costume design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Silverexile发布了新的文献求助10
1秒前
宁典完成签到,获得积分10
2秒前
2秒前
小王发布了新的文献求助10
2秒前
3秒前
3秒前
yy完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
6秒前
baishiyan发布了新的文献求助10
6秒前
scofield完成签到,获得积分20
6秒前
6秒前
7秒前
scofield发布了新的文献求助10
8秒前
kkkking发布了新的文献求助10
8秒前
科研小白完成签到,获得积分10
9秒前
Wenjie发布了新的文献求助10
10秒前
科研废物发布了新的文献求助10
11秒前
不一样的光完成签到,获得积分10
11秒前
11秒前
YWJ完成签到 ,获得积分10
12秒前
12秒前
FashionBoy应助无语的从云采纳,获得10
12秒前
12秒前
黄家宝发布了新的文献求助10
12秒前
13秒前
13秒前
luo关闭了luo文献求助
14秒前
14秒前
潇湘夜雨发布了新的文献求助10
14秒前
木又完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
文静灵阳发布了新的文献求助10
16秒前
jiulei完成签到,获得积分10
17秒前
123567发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4715190
求助须知:如何正确求助?哪些是违规求助? 4077736
关于积分的说明 12611316
捐赠科研通 3780850
什么是DOI,文献DOI怎么找? 2088541
邀请新用户注册赠送积分活动 1114820
科研通“疑难数据库(出版商)”最低求助积分说明 992050