已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based car accident risk prediction for usage-based insurance

事故(哲学) 汽车保险 意外伤害保险 计算机科学 精算学 机器学习 业务 哲学 认识论
作者
Silvia Strada,Emanuele Costantini,Simone Formentin,Sergio M. Savaresi
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-18
标识
DOI:10.3233/ida-230971
摘要

The Usage-Based Insurance paradigm, which is receiving a lot of attention in recent years, envisages computing the car policy premium based on accident risk probability, evaluated observing the past driving history and habits. However, Usage-Based Insurance strategies are usually based on simple empirical decision rules built on travelled distance. The development of intelligent systems for smart risk prediction using the stored overall driving behaviour, without the need of other insurance or socio-demographic information, is still an open challenge. This work aims at exploring a comprehensive machine learning-based approach solely based on driving-related data of private vehicles. The anonymized dataset employed in this study is provided by the telematics company UnipolTech, and contains space/time densely measured data related to trips of almost 100000 vehicles uniformly spread on the Italian territory, recorded every 2 km by on-board telematics fix devices (black boxes), from February 2018 to February 2020. An innovative feature engineering process is proposed, with the aim of uncovering novel informative quantities able to disclose complex aspects of driving behaviour. Recent and powerful learning techniques are explored to develop advanced predictive models, able to provide a reliable accident probability for each vehicle, automatically managing the critical imbalance intrinsically peculiar this kind of datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyuyu关注了科研通微信公众号
1秒前
充电宝应助欣喜的迎梦采纳,获得10
1秒前
Kevin完成签到 ,获得积分10
2秒前
3秒前
脑洞疼应助舒适路人采纳,获得10
3秒前
可爱的函函应助小喵采纳,获得10
3秒前
5秒前
6秒前
谦让寒云完成签到 ,获得积分10
7秒前
8秒前
成成完成签到,获得积分0
9秒前
CAS完成签到,获得积分10
9秒前
赟yun完成签到,获得积分0
11秒前
iceice发布了新的文献求助10
11秒前
打打应助自然剑采纳,获得10
13秒前
13秒前
NexusExplorer应助舒适路人采纳,获得10
15秒前
虚心的海雪完成签到 ,获得积分10
16秒前
慕青应助Wang采纳,获得10
16秒前
上官若男应助Wang采纳,获得10
16秒前
希望天下0贩的0应助iceice采纳,获得10
18秒前
111完成签到 ,获得积分10
19秒前
尖叫尖叫完成签到 ,获得积分10
19秒前
小萝卜123发布了新的文献求助10
20秒前
李健应助enenen采纳,获得10
20秒前
21秒前
21秒前
kyj完成签到,获得积分10
24秒前
共享精神应助预言烨采纳,获得10
25秒前
mini昕发布了新的文献求助10
26秒前
26秒前
爆米花应助ff采纳,获得10
27秒前
27秒前
Iiiilr完成签到 ,获得积分10
32秒前
hajy完成签到,获得积分10
33秒前
马海鑫完成签到 ,获得积分10
33秒前
34秒前
FashionBoy应助开朗含海采纳,获得10
34秒前
pitto发布了新的文献求助10
34秒前
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784615
求助须知:如何正确求助?哪些是违规求助? 3329736
关于积分的说明 10243308
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391