2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning

计算机科学 光电子学 材料科学
作者
Bo Tong,Jiajun Xu,Jinhong Du,Peitao Liu,Tengda Du,Qiang Wang,L Li,Yuning Wei,Jiangxu Li,Jinhua Liang,Chi Liu,Zhibo Liu,Li‐Hui Chen,Lai‐Peng Ma,Yang Chai,Wencai Ren
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1) 被引量:1
标识
DOI:10.1038/s41467-025-56819-5
摘要

Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH4)BiI3, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve ~99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption. The authors synthesise a Bi-based halide and use it as a photosensitive control gate in a floating-gate transistor, enabling a non-volatile optoelectronic memory with ultra-low energy consumption and large resistive state numbers, for high-accuracy machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangshuhong发布了新的文献求助10
刚刚
QDU完成签到,获得积分10
1秒前
传奇3应助echo采纳,获得10
1秒前
Rumble发布了新的文献求助10
2秒前
Toungoo发布了新的文献求助10
3秒前
4秒前
5秒前
顾矜应助狂野凝竹采纳,获得10
6秒前
田様应助烂漫的易真采纳,获得30
6秒前
星辰大海应助吕大本事采纳,获得10
9秒前
qt发布了新的文献求助10
9秒前
9秒前
yinjs158发布了新的文献求助10
9秒前
11秒前
11秒前
..完成签到,获得积分10
13秒前
HEHONGBIN完成签到,获得积分10
13秒前
yayyaya发布了新的文献求助10
14秒前
FashionBoy应助Toungoo采纳,获得10
15秒前
典雅煎蛋发布了新的文献求助10
17秒前
Fox发布了新的文献求助10
17秒前
冰魄落叶完成签到,获得积分10
18秒前
华仔应助wangshuhong采纳,获得10
19秒前
19秒前
20秒前
猪猪侠发布了新的文献求助10
20秒前
粥粥应助翠萍采纳,获得10
20秒前
lh完成签到,获得积分10
22秒前
今后应助苗条荆采纳,获得15
22秒前
科研通AI2S应助清音采纳,获得30
22秒前
小西发布了新的文献求助30
23秒前
情怀应助Mimi采纳,获得20
24秒前
科目三应助研友_ZlPDdZ采纳,获得10
24秒前
无花果应助傢誠采纳,获得30
24秒前
25秒前
25秒前
27秒前
222完成签到,获得积分10
27秒前
29秒前
lindalin发布了新的文献求助10
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4088842
求助须知:如何正确求助?哪些是违规求助? 3627556
关于积分的说明 11501967
捐赠科研通 3340306
什么是DOI,文献DOI怎么找? 1836275
邀请新用户注册赠送积分活动 904291
科研通“疑难数据库(出版商)”最低求助积分说明 822208