清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk Factors for Gastrointestinal Bleeding in Patients With Acute Myocardial Infarction: Multicenter Retrospective Cohort Study

医学 逻辑回归 回顾性队列研究 接收机工作特性 心肌梗塞 弗雷明翰风险评分 倾向得分匹配 队列 胃肠道出血 内科学 决策树 急诊医学 疾病 数据挖掘 计算机科学
作者
Yanqi Kou,Shicai Ye,Yuan Tian,Ke Yang,Ling Qin,Zhe Huang,Botao Luo,Yanping Ha,Liping Zhan,Ruyin Ye,Yujie Huang,Qing Zhang,Kun He,Mingkai Liang,Jieming Zheng,Hua‐Chih Huang,Chun-Yi Wu,Lei Ge,Yuping Yang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67346-e67346 被引量:1
标识
DOI:10.2196/67346
摘要

Background Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making. Objective This study aimed to develop and validate a machine learning (ML)–based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support. Methods A multicenter retrospective cohort study was conducted, including 1910 patients with AMI from the Affiliated Hospital of Guangdong Medical University (2005-2024). Patients were divided into training (n=1575) and testing (n=335) cohorts based on admission dates. For external validation, 1746 patients with AMI were included in the publicly available MIMIC-IV (Medical Information Mart for Intensive Care IV) database. Propensity score matching was adjusted for demographics, and the Boruta algorithm identified key predictors. A total of 7 ML algorithms—logistic regression, k-nearest neighbors, support vector machine, decision tree, random forest (RF), extreme gradient boosting, and neural networks—were trained using 10-fold cross-validation. The models were evaluated for the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, recall, F1-score, and decision curve analysis. Shapley additive explanations analysis ranked variable importance. Kaplan-Meier survival analysis evaluated the impact of GIB on short-term survival. Multivariate logistic regression assessed the relationship between coronary heart disease (CHD) and in-hospital GIB after adjusting for clinical variables. Results The RF model outperformed other ML models, achieving an area under the receiver operating characteristic curve of 0.77 in the training cohort, 0.77 in the testing cohort, and 0.75 in the validation cohort. Key predictors included red blood cell count, hemoglobin, maximal myoglobin, hematocrit, CHD, and other variables, all of which were strongly associated with GIB risk. Decision curve analysis demonstrated the clinical use of the RF model for early risk stratification. Kaplan-Meier survival analysis showed no significant differences in 7- and 15-day survival rates between patients with AMI with and without GIB (P=.83 for 7-day survival and P=.87 for 15-day survival). Multivariate logistic regression showed that CHD was an independent risk factor for in-hospital GIB (odds ratio 2.79, 95% CI 2.09-3.74). Stratified analyses by sex, age, occupation, marital status, and other subgroups consistently showed that the association between CHD and GIB remained robust across all subgroups. Conclusions The ML-based RF model provides a robust and clinically applicable tool for predicting in-hospital GIB in patients with AMI. By leveraging routinely available clinical and laboratory data, the model supports early risk stratification and personalized preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘忧Aquarius完成签到,获得积分10
35秒前
林利芳完成签到 ,获得积分0
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
辣小扬完成签到 ,获得积分10
2分钟前
温馨家园完成签到 ,获得积分10
3分钟前
uo发布了新的文献求助20
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
完美世界应助科研通管家采纳,获得20
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
uracil97完成签到,获得积分10
4分钟前
4分钟前
4分钟前
幸运小猫发布了新的文献求助10
4分钟前
优美香露发布了新的文献求助10
4分钟前
方白秋完成签到,获得积分0
4分钟前
温柔冰岚完成签到 ,获得积分10
4分钟前
多啦啦完成签到,获得积分10
5分钟前
5分钟前
奥斯卡完成签到,获得积分0
5分钟前
笑声像鸭子叫完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
奋斗的小研完成签到,获得积分10
6分钟前
fighting发布了新的文献求助10
6分钟前
雨城完成签到 ,获得积分10
6分钟前
fighting发布了新的文献求助10
7分钟前
fighting完成签到,获得积分10
7分钟前
7分钟前
Able完成签到,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706530
求助须知:如何正确求助?哪些是违规求助? 5174769
关于积分的说明 15247017
捐赠科研通 4860012
什么是DOI,文献DOI怎么找? 2608307
邀请新用户注册赠送积分活动 1559229
关于科研通互助平台的介绍 1517014