Predicting Childhood and Adolescence Hypertension: Analysis of Predictors Using Machine Learning

医学 接收机工作特性 随机森林 逻辑回归 队列 梯度升压 决策树 人口学 机器学习 人工智能 儿科 统计 内科学 数学 计算机科学 社会学
作者
Hengyan Liu,Weibin Kou,Yik‐Chung Wu,Pui Hing Chau,Thomas Chung,Dyt Fong
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:155 (3)
标识
DOI:10.1542/peds.2024-066675
摘要

BACKGROUND There has been a substantial burden of hypertension in children and adolescents. Given the availability of primary prevention strategies, it is important to determine predictors for early identification of children and adolescents at risk of hypertension. This study aims to attempt and validate machine learning (ML) algorithms for accurately predicting blood pressure (BP) status (normal, prehypertension, and hypertension) over 1- and 3-year periods, identifying key predictors without compromising model performance. METHODS We included a population-based cohort of primary 1 to secondary 6 students (typically aged 6 to 18 years) during the academic years of 1995 to 1996 and 2019 to 2020 in Hong Kong. Thirty-six easy-assessed predictors were initially model childhood BP status. Multiple ML algorithms, decision tree, random forest, k-nearest neighbor, eXtreme Gradient Boosting (XGBoost), and multinomial logistic regression (MLR), were used. Model evaluation was performed by various accuracy metrics. The Shapley Additive Explanations (SHAP) was used to identify key features for both predictions. RESULTS A total of 923 301 and 602 179 visit pairs were used for the 1- and 3-year predictions, respectively. XGBoost demonstrated the highest prediction accuracies for 1-year (macro–area under the receiver operating characteristic curve [AUROC] = 0.92, micro-AUROC = 0.91) and 3-year (macro-AUROC = 0.91, micro-AUROC = 0.90) periods. The traditional MLR approach had the lowest accuracies for 1- (macro-AUROC = 0.70, micro-AUROC = 0.68) and 3-year (macro-AUROC = 0.70, micro-AUROC = 0.68) predictions. The SHAP values identified 17 key predictors without the need for direct BP measurements or laboratory tests. CONCLUSION ML prediction models can accurately predict childhood prehypertension and hypertension at 1 and 3 years, independent of BP and laboratory measurements. The identified key predictors may inform areas for personalized prevention in hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江江江江江江江江完成签到,获得积分10
刚刚
zhukun发布了新的文献求助10
2秒前
夕诙应助emnjkl采纳,获得10
4秒前
祥瑞完成签到,获得积分10
5秒前
qiao应助默默采纳,获得10
8秒前
祝好发布了新的文献求助20
14秒前
emnjkl完成签到,获得积分20
18秒前
冷傲雍完成签到,获得积分20
18秒前
芭娜55完成签到 ,获得积分10
22秒前
23秒前
24秒前
热心的百川完成签到 ,获得积分20
26秒前
丰富又亦完成签到,获得积分10
28秒前
Bblythe完成签到 ,获得积分10
28秒前
30秒前
Akim应助奔波儿灞采纳,获得10
31秒前
NexusExplorer应助硕shuo采纳,获得10
32秒前
AA发布了新的文献求助10
34秒前
july完成签到 ,获得积分10
35秒前
37秒前
丰富又亦发布了新的文献求助10
37秒前
奔波儿灞完成签到,获得积分20
40秒前
43秒前
lant0ng完成签到 ,获得积分10
43秒前
GH发布了新的文献求助10
48秒前
48秒前
泡泡完成签到 ,获得积分10
50秒前
pluto应助木木三采纳,获得20
50秒前
六六完成签到 ,获得积分10
51秒前
52秒前
苏苏苏发布了新的文献求助10
53秒前
谨慎的擎宇完成签到,获得积分10
56秒前
57秒前
58秒前
晏子完成签到,获得积分10
58秒前
河堤完成签到,获得积分10
1分钟前
远江丠发布了新的文献求助10
1分钟前
陶军辉完成签到 ,获得积分10
1分钟前
科目三应助meng采纳,获得10
1分钟前
快乐的小央完成签到,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921