HiRXN: Hierarchical Attention-Based Representation Learning for Chemical Reaction

代表(政治) 计算机科学 认知科学 人工智能 认知心理学 心理学 政治学 政治 法学
作者
Yahui Cao,Tao Zhang,Xin Zhao,Haotong Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01787
摘要

In recent years, natural language processing (NLP) techniques, including large language modeling (LLM), have contributed significantly to advancements in organic chemistry research. Chemical reaction representations provide a link between NLP models and chemistry prediction tasks and enable the translation of complex chemical processes into a format that NLP models can understand and learn from. However, previous representation methods fail to adequately consider the hierarchical and structural information inherent in chemical reactions. Here, we propose a tool named HiRXN to learn the comprehensive representation of chemical reactions based on their hierarchical structure. In order to significantly enhance feature engineering for machine learning (ML) models, HiRXN develops an effective tokenization method called RXNTokenizer to capture atomic microenvironment features with multiradius. Then, the hierarchical attention network is used to integrate information from atomic microenvironment-level and molecule-level to accurately understand chemical reactions. The experimental results show that HiRXN is capable of representing chemical reactions and achieves remarkable performance in terms of reaction regression and classification prediction tasks. A web server has been developed to provide a specialized service that accepts Reaction SMILES as input and provides predicted results. The Web site is accessible at http://bdatju.com.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
丘比特应助认真的海豚采纳,获得10
5秒前
安静达发布了新的文献求助10
5秒前
吨吨喝水发布了新的文献求助10
7秒前
sy完成签到,获得积分10
9秒前
10秒前
Akim应助LLsophia采纳,获得10
10秒前
11秒前
11秒前
Jasper应助默言晨曦采纳,获得10
11秒前
深情安青应助zly采纳,获得10
12秒前
13秒前
李爱国应助feezy采纳,获得10
13秒前
发哥完成签到 ,获得积分10
13秒前
宋yj完成签到,获得积分10
14秒前
小白发布了新的文献求助10
15秒前
安静达完成签到,获得积分10
16秒前
18秒前
18秒前
吨吨喝水完成签到,获得积分10
19秒前
星辰大海应助凯特采纳,获得10
20秒前
21秒前
迷路向松完成签到,获得积分10
23秒前
所所应助高挑的小蕊采纳,获得10
23秒前
LSY完成签到 ,获得积分10
24秒前
ZZ_star发布了新的文献求助10
25秒前
爆米花应助zjq采纳,获得10
26秒前
LW发布了新的文献求助10
27秒前
英姑应助liugm采纳,获得10
28秒前
29秒前
29秒前
31秒前
red完成签到,获得积分10
31秒前
32秒前
33秒前
GTRK完成签到 ,获得积分10
34秒前
35秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800147
求助须知:如何正确求助?哪些是违规求助? 3345461
关于积分的说明 10325234
捐赠科研通 3061940
什么是DOI,文献DOI怎么找? 1680663
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763525