亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Lightweight Cotton Field Weed Detection Model Enhanced with EfficientNet and Attention Mechanisms

杂草 领域(数学) 环境科学 农业工程 农学 计算机科学 生物 数学 工程类 纯数学
作者
Zheng Lu,Lyujia Long,Chengao Zhu,Mengmeng Jia,Ping-Ting Chen,Jun Tie
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:14 (11): 2649-2649 被引量:4
标识
DOI:10.3390/agronomy14112649
摘要

Cotton is a crucial crop in the global textile industry, with major production regions including China, India, and the United States. While smart agricultural mechanization technologies, such as automated irrigation and precision pesticide systems, have improved crop management, weeds remain a significant challenge. These weeds not only compete with cotton for nutrients but can also serve as hosts for diseases, affecting both cotton yield and quality. Existing weed detection models perform poorly in the complex environment of cotton fields, where the visual features of weeds and crops are similar and often overlap, resulting in low detection accuracy. Furthermore, real-time deployment on edge devices is difficult. To address these issues, this study proposes an improved lightweight weed detection model, YOLO-WL, based on the YOLOv8 architecture. The model leverages EfficientNet to reconstruct the backbone, reducing model complexity and enhancing detection speed. To compensate for any performance loss due to backbone simplification, CA (cross-attention) is introduced into the backbone, improving feature sensitivity. Finally, AFPN (Adaptive Feature Pyramid Network) and EMA (efficient multi-scale attention) mechanisms are integrated into the neck to further strengthen feature extraction and improve weed detection accuracy. At the same time, the model maintains a lightweight design suitable for deployment on edge devices. Experiments on the CottonWeedDet12 dataset show that the YOLO-WL model achieved an mAP of 92.30%, reduced the detection time per image by 75% to 1.9 ms, and decreased the number of parameters by 30.3%. After TensorRT optimization, the video inference time was reduced from 23.134 ms to 2.443 ms per frame, enabling real-time detection in practical agricultural environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
wop111应助M3L2采纳,获得30
26秒前
11111驳回了Lucas应助
46秒前
leapper发布了新的文献求助10
47秒前
李健应助年轻的烧鹅采纳,获得10
48秒前
54秒前
lcc应助唐泽雪穗采纳,获得40
55秒前
59秒前
1分钟前
唐泽雪穗发布了新的文献求助40
1分钟前
1分钟前
leapper完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
郝莫英发布了新的文献求助10
1分钟前
1分钟前
hizj发布了新的文献求助10
1分钟前
郝莫英完成签到,获得积分20
2分钟前
2分钟前
IrG完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
在水一方完成签到,获得积分0
3分钟前
11111完成签到,获得积分10
3分钟前
3分钟前
11111发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
时尚的飞机完成签到,获得积分10
4分钟前
mochalv123完成签到 ,获得积分10
4分钟前
5分钟前
无误完成签到,获得积分10
5分钟前
无误发布了新的文献求助20
5分钟前
精明凡双完成签到,获得积分10
5分钟前
周哲应助唐泽雪穗采纳,获得90
5分钟前
6分钟前
唐泽雪穗发布了新的文献求助90
6分钟前
HJJHJH应助无误采纳,获得20
6分钟前
深情安青应助Yingkun_Xu采纳,获得10
7分钟前
舒适的方盒完成签到 ,获得积分10
7分钟前
彩虹儿应助科研通管家采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4858565
求助须知:如何正确求助?哪些是违规求助? 4154260
关于积分的说明 12874417
捐赠科研通 3904762
什么是DOI,文献DOI怎么找? 2145385
邀请新用户注册赠送积分活动 1164524
关于科研通互助平台的介绍 1065905