[Development and validation of a nomogram combining clinical and

列线图 计算机科学 医学 肿瘤科
作者
Yu Guo,Hui Zhu,Xin Chen,Shengying Qin,Fei Liu
出处
期刊:PubMed 卷期号:105 (4): 284-290
标识
DOI:10.3760/cma.j.cn112137-20240708-01547
摘要

Objective: To establish and validate a nomogram based on clinical characteristics and metabolic parameters derived from 18F-fluorodeoxyglucose positron emission tomography and computed tomography (18F-FDG PET/CT) for prediction of high-grade patterns (HGP) in invasive lung adenocarcinoma. Methods: The clinical and PET/CT image data of 311 patients who were confirmed invasive lung adenocarcinoma and underwent pre-treatment 18F-FDG PET/CT scan in Beijing Hospital between October 2017 and March 2022 were retrospectively collected. The enrolled patients were divided into HGP group (196 patients) and non-HGP group (115 patients) according to the presence and absence of HGP. The data were divided into training set and validation set at 7∶3 ratio using R statistical software and simple random allocation. A nomogram prediction model was constructed in training set. The area under the curve (AUC) of receiver operating characteristic (ROC) was depicted in the training and validation set respectively for assessing the prediction efficacy. The goodness of fit, consistency between predicted and observed probability and clinical usefulness of the model were evaluated by Hosmer-Lemeshow test, calibration curve and decision curve analysis (DCA). Results: The age of 311 patients were (65.6±10.9) years and included 148 males (47.6%). In training set of 217 patients, 141 (65.0%) contained HGP while in validation set of 94 patients, 55 (58.5%) contained HGP. Gender in training set, serum carcino-embryonic antigen (CEA) in validation set, smoking history, clinical stage, cytokeratin fragments (CYFRA21-1), maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG) and maximum diameter (Dmax) in both sets showed significant differences between HGP and non-HGP groups (all P<0.05). The variables integrated in the model were gender, clinical stage, CYFRA21-1, SUVmean and TLG. The AUC (95%CI) of the ROC curve in training and validation set were 0.888 (0.844-0.932) and 0.925 (0.872-0.977), the sensitivity and specificity were 85.1%, 79.0% and 83.6%, 89.7%, respectively. The model showed good goodness of fit (training set: χ2=8.247, P=0.410, validation set: χ2=1.636, P=0.990). Calibration curve and DCA also indicated good consistency and clinical net benefit of the nomogram model. Conclusion: The nomogram model based on clinical features and metabolic parameters derived from 18F-FDG PET/CT could effectively predict the presence of HGP in invasive lung adenocarcinoma and be beneficial to treatment planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶克思发布了新的文献求助10
刚刚
Zbzb发布了新的文献求助10
刚刚
prince11发布了新的文献求助10
刚刚
pluto应助Snoopy采纳,获得20
刚刚
Akim应助JiaY采纳,获得10
1秒前
李善聪完成签到,获得积分10
1秒前
Gao发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
zu完成签到,获得积分10
3秒前
山巅一寺一壶酒完成签到,获得积分10
5秒前
6秒前
zyy0910发布了新的文献求助10
7秒前
彬彬发布了新的文献求助10
7秒前
Lucy小影发布了新的文献求助10
7秒前
长安发布了新的文献求助10
8秒前
映城给hhhhh的求助进行了留言
8秒前
8秒前
10秒前
10秒前
云悠水澈完成签到,获得积分10
10秒前
daoyi发布了新的文献求助10
11秒前
11秒前
xlk2222发布了新的文献求助10
13秒前
15秒前
1111发布了新的文献求助10
15秒前
小二郎应助cym采纳,获得30
15秒前
pgg完成签到,获得积分20
15秒前
wanci应助Gao采纳,获得10
17秒前
17秒前
18秒前
神勇的语梦完成签到,获得积分10
18秒前
ZZY完成签到,获得积分10
18秒前
19秒前
长安完成签到,获得积分10
19秒前
传奇3应助地瓜叶采纳,获得10
20秒前
zhangliangfu发布了新的文献求助10
20秒前
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Planning For Autonomous Aerial Interception Of UAVs 550
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4122222
求助须知:如何正确求助?哪些是违规求助? 3660188
关于积分的说明 11585947
捐赠科研通 3361453
什么是DOI,文献DOI怎么找? 1847080
邀请新用户注册赠送积分活动 911636
科研通“疑难数据库(出版商)”最低求助积分说明 827513