Two-Step Transfer Learning Improves Deep Learning–Based Drug Response Prediction in Small Datasets: A Case Study of Glioblastoma

胶质母细胞瘤 学习迁移 药物反应 深度学习 人工智能 医学 药品 计算机科学 数据科学 机器学习 药理学 癌症研究
作者
Jie Ju,Ioannis Ntafoulis,Michelle Klein,Marcel J. T. Reinders,Martine L.M. Lamfers,Andrew Stubbs,Yunlei Li
出处
期刊:Bioinformatics and Biology Insights [SAGE Publishing]
卷期号:19
标识
DOI:10.1177/11779322241301507
摘要

While deep learning (DL) is used in patients’ outcome predictions, the insufficiency of patient samples limits the accuracy. In this study, we investigated how transfer learning (TL) alleviates the small sample size problem. A 2-step TL framework was constructed for a difficult task: predicting the response of the drug temozolomide (TMZ) in glioblastoma (GBM) cell cultures. The GBM is aggressive, and most patients do not benefit from the only approved chemotherapeutic agent TMZ. O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status is the only biomarker for TMZ responsiveness but has shown limited predictive power. The 2-step TL framework was built on 3 datasets: (1) the subset of the Genomics of Drug Sensitivity in Cancer (GDSC) dataset, including miscellaneous cell cultures treated by TMZ, cyclophosphamide, bortezomib, and oxaliplatin, as the source dataset; (2) the Human Glioblastoma Cell Culture (HGCC) dataset, for fine-tuning; and (3) a small target dataset GSE232173, for validation. The latter two included specifically TMZ-treated GBM cell cultures. The DL models were pretrained on the cell cultures treated by each of the 4 drugs from GDSC, respectively. Then, the DL models were refined on HGCC, where the best source drug was identified. Finally, the DL model was validated on GSE232173. Using 2-step TL with pretraining on oxaliplatin was not only superior to those without TL and with 1-step TL but also better than 3 benchmark methods, including MGMT. The oxaliplatin-based TL improved the performance probably by increasing the weights of cell cycle-related genes, which relates to the TMZ response processes. Our findings support the potential of oxaliplatin being an alternative therapy for patients with GBM and TL facilitating drug repurposing research. We recommend that following our methodology, using mixed cancers and a related drug as the source and then fine-tuning the model with the target cancer and the target drug will enhance drug response prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yls发布了新的文献求助10
刚刚
852应助DONG采纳,获得30
1秒前
zyy发布了新的文献求助10
2秒前
PAIDAXXXX完成签到,获得积分10
2秒前
深情安青应助chengzi采纳,获得10
3秒前
ahhhhkkkha发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
Dc完成签到,获得积分10
7秒前
9秒前
NexusExplorer应助yls采纳,获得10
9秒前
Agrale完成签到 ,获得积分10
11秒前
哟嚛发布了新的文献求助10
12秒前
kiuikiu发布了新的文献求助10
13秒前
JKIKU完成签到 ,获得积分10
15秒前
大腚疯猪应助橘子采纳,获得20
18秒前
诸葛御风应助yy采纳,获得10
19秒前
迷路的书南应助嘉嘉采纳,获得10
20秒前
小二郎应助小羊佳佳采纳,获得10
22秒前
23秒前
不穷知识发布了新的文献求助10
23秒前
chayue完成签到,获得积分10
23秒前
少7一点8完成签到,获得积分10
25秒前
26秒前
SciGPT应助子车万仇采纳,获得10
26秒前
27秒前
搜集达人应助Hyh_orz采纳,获得10
29秒前
liyu完成签到,获得积分10
29秒前
dddd完成签到 ,获得积分10
30秒前
31秒前
dddd完成签到,获得积分10
31秒前
liyu发布了新的文献求助10
32秒前
星辰大海应助科研通管家采纳,获得10
32秒前
NexusExplorer应助科研通管家采纳,获得10
32秒前
Lucas应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
华仔应助科研通管家采纳,获得10
32秒前
32秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841