已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence‐aided colonoscopic differential diagnosis between Crohn's disease and gastrointestinal tuberculosis

医学 结肠镜检查 接收机工作特性 克罗恩病 诊断准确性 人工智能 肺结核 内科学 胃肠病学 放射科 疾病 病理 计算机科学 癌症 结直肠癌
作者
Kwangbeom Park,Jisup Lim,Seung Hwan Shin,Munemasa Ryu,Heehyun Shin,Min Young Lee,Seung Wook Hong,Sung Wook Hwang,Sang Hyoung Park,Dong‐Hoon Yang,Byong Duk Ye,Seung‐Jae Myung,Suk‐Kyun Yang,Namkug Kim,Jeong‐Sik Byeon
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
被引量:2
标识
DOI:10.1111/jgh.16788
摘要

Abstract Background and Aim Differentiating between Crohn's disease (CD) and gastrointestinal tuberculosis (GITB) is challenging. We aimed to evaluate the clinical applicability of an artificial intelligence (AI) model for this purpose. Methods The AI model was developed and assessed using an internal dataset comprising 1,132 colonoscopy images of CD and 1,045 colonoscopy images of GITB at a tertiary referral center. Its stand‐alone performance was further evaluated in an external dataset comprising 67 colonoscopy images of 17 CD patients and 63 colonoscopy images of 14 GITB patients from other institutions. Additionally, a crossover trial involving three expert endoscopists and three trainee endoscopists compared AI‐assisted and unassisted human interpretations. Results In the internal dataset, the sensitivity, specificity, and accuracy of the AI model in distinguishing between CD and GITB were 95.3%, 100.0%, and 97.7%, respectively, with an area under the ROC curve of 0.997. In the external dataset, the AI model exhibited a sensitivity, specificity, and accuracy of 77.8%, 85.1%, and 81.5%, respectively, with an area under the ROC curve of 0.877. In the human endoscopist trial, AI assistance increased the pooled accuracy of the six endoscopists from 86.2% to 88.8% ( P = 0.010). While AI did not significantly enhance diagnostic accuracy for the experts (96.7% with AI vs 95.6% without, P = 0.360), it significantly improved accuracy for the trainees (81.0% vs 76.7%, P = 0.002). Conclusions This AI model shows potential in aiding the accurate differential diagnosis between CD and GITB, particularly benefiting less experienced endoscopists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Allen0520完成签到,获得积分10
1秒前
等等完成签到,获得积分10
3秒前
4秒前
SciGPT应助nini采纳,获得10
4秒前
Lucas应助郑彦如采纳,获得20
5秒前
早早入眠完成签到,获得积分10
5秒前
乐乐应助chentutu采纳,获得10
6秒前
丘比特应助易烊千玺采纳,获得10
7秒前
8秒前
8秒前
嘟嘟嘟cpu完成签到,获得积分10
10秒前
遇上就这样吧应助ceeray23采纳,获得20
12秒前
yf发布了新的文献求助10
12秒前
迷路冰颜完成签到 ,获得积分10
12秒前
13秒前
14秒前
箫笛完成签到 ,获得积分10
14秒前
15秒前
早上坏完成签到,获得积分10
15秒前
16秒前
16秒前
遇上就这样吧应助ceeray23采纳,获得20
17秒前
梦雪应助孙家贝采纳,获得10
18秒前
19秒前
chentutu发布了新的文献求助10
19秒前
易烊千玺发布了新的文献求助10
19秒前
YBR完成签到 ,获得积分10
19秒前
丘比特应助天天向上采纳,获得10
20秒前
沦为发布了新的文献求助10
21秒前
momo完成签到 ,获得积分10
21秒前
天真的万声完成签到,获得积分10
22秒前
24秒前
Xu完成签到 ,获得积分10
25秒前
26秒前
wuyaRY完成签到 ,获得积分10
28秒前
最重中之重完成签到,获得积分10
28秒前
isak发布了新的文献求助10
29秒前
f1sh完成签到,获得积分10
30秒前
doctor_quyi发布了新的文献求助10
31秒前
顾矜应助王鑫采纳,获得10
31秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5385293
求助须知:如何正确求助?哪些是违规求助? 4507902
关于积分的说明 14029231
捐赠科研通 4417843
什么是DOI,文献DOI怎么找? 2426701
邀请新用户注册赠送积分活动 1419398
关于科研通互助平台的介绍 1397838