Bio‐Inspired Graded and Uniform Cylindrical Lattices Fabricated by Material Extrusion 3D Printing: An Experimental and Numerical Investigation

材料科学 复合材料 挤压 钻石 模数 机械工程 有限元法 压力(语言学) 3D打印 吸收(声学) 格子(音乐) 结构工程 声学 工程类 语言学 哲学 物理
作者
Mehmet Akif Oymak,Erkan Bahçe,Gurminder Singh
出处
期刊:Journal of Applied Polymer Science [Wiley]
卷期号:142 (10) 被引量:1
标识
DOI:10.1002/app.56551
摘要

ABSTRACT The main requirements of the biomedical and aerospace industries are new and innovative lightweight materials. Bio‐inspired structures, which are inspired by various biological designs, have demonstrated notable advancements over traditional lightweight structures. In this study, bioinspired uniform and graded cylindrical triply periodic minimal surface (TPMS) and strut‐based lattice structures were studied for their mechanical qualities and energy absorption capacities fabricated by material extrusion 3D printing using PLA material. It was found that the cylindrical TPMS diamond lattice achieved maximum stress of 78.5 MPa and absorbed 19.14 MJ/m 3 of energy, outperforming strut‐based designs with a 48% higher energy absorption than cylindrical BCC lattice structure. Graded designs further improve energy absorption through a better stress distribution. The findings validated the Gibson–Ashby model, highlighting the enhanced load distribution and stress transfer in the strut‐based and TPMS diamond structures. The finite element (FE) model results closely matched the experimental data, confirming its predictive reliability with a maximum error of energy absorption of 7.7%, elastic modulus of 6.9%, and plateau stress of 4.7%. These insights underscore the superior energy absorption and mechanical stability of cylindrical TPMS diamond lattices, indicating their potential for satisfying stringent industrial and technical performance requirements. The novelty of these designs lies in their bioinspired structures and significant enhancements in mechanical performance and energy absorption. Future research should build on these results to design efficient materials tailored to specific needs using FE models to optimize development processes before experimental testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
八百标兵奔北坡完成签到 ,获得积分10
1秒前
4秒前
5秒前
科研小子完成签到,获得积分20
7秒前
hzx发布了新的文献求助20
8秒前
科研小子发布了新的文献求助10
10秒前
20秒前
22秒前
nnnnnn完成签到,获得积分20
22秒前
Huang完成签到,获得积分10
24秒前
25秒前
nnnnnn发布了新的文献求助10
26秒前
26秒前
尊敬的怀绿完成签到,获得积分10
29秒前
蓝枫发布了新的文献求助10
31秒前
海鸥完成签到,获得积分10
31秒前
来可追发布了新的文献求助10
31秒前
Lucas应助阿妍碎碎念采纳,获得10
32秒前
34秒前
34秒前
35秒前
在水一方应助nnnnnn采纳,获得10
37秒前
39秒前
酷酷听安发布了新的文献求助10
39秒前
来可追完成签到,获得积分10
39秒前
40秒前
40秒前
舒心的青亦完成签到 ,获得积分10
41秒前
xbzstca发布了新的文献求助10
41秒前
kasdf发布了新的文献求助10
44秒前
44秒前
alex完成签到,获得积分10
47秒前
向言之发布了新的文献求助10
48秒前
典雅起眸发布了新的文献求助10
50秒前
STZHEN完成签到,获得积分10
51秒前
二分三分完成签到,获得积分10
54秒前
小屁鱼发布了新的文献求助10
57秒前
聂青枫完成签到,获得积分10
59秒前
漫洲江完成签到 ,获得积分10
59秒前
在水一方应助xiaozhang采纳,获得30
59秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4169585
求助须知:如何正确求助?哪些是违规求助? 3704910
关于积分的说明 11691943
捐赠科研通 3391732
什么是DOI,文献DOI怎么找? 1860047
邀请新用户注册赠送积分活动 920207
科研通“疑难数据库(出版商)”最低求助积分说明 832631