ESG Assessment Methodology for Emerging Technologies: Plasma- versus Conventional Technology for Ammonia Production

生产(经济) 氨生产 新兴技术 等离子体 计算机科学 环境科学 化学 纳米技术 材料科学 物理 经济 有机化学 量子力学 宏观经济学
作者
Le Yu,Amin Keilani,Nam Nghiep Tran,Marc Escribà‐Gelonch,Michael Evan Goodsite,Sukhbir Sandhu,Harpinder Sandhu,Volker Hessel
标识
DOI:10.1039/d4su00423j
摘要

Environmental, social and governance (ESG) criteria demand that enterprises should not be assessed solely on their financial performance, but also on their environmental, social, and governance performance. This numerical assessment of ESG criteria enables them to be evaluated with the consideration of other financial issues of enterprises' performance and thereby guides financial investments into environmentally and socially responsible firms. ESG, however, solidifies the continuance of conventional technologies but can potentially disadvantage emerging technologies. This study is the first to forecast the ESG potential of emerging chemical technologies. The Morgan Stanley Capital International (MSCI) rating system is applied to one of the top 3 global chemical processes. Ammonia (NH3) is produced via the Haber-Bosch (HB) process, which needs a huge fossil fuel input and high energy consumption, leading to a significant contribution to carbon dioxide (CO2) emissions. In contrast, the ESG assessment rates emerging plasma technology and its spearhead companies that lead innovation and development in this field, which provide the benefits of being a clean, sustainable alternative for green NH3 production. Five different plasma-technology companies are considered, with the technology readiness level (TRL) ranging from 3 to 9. These are compared to five different conventional HB companies. We examine the final ESG result of the plasma technology companies, exploring their environmental advances and social viability. In this study, five different themes were selected, including eleven issues, to measure the plasma-technology company's management related to ESG risks and opportunities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助小青菜采纳,获得10
刚刚
周末完成签到,获得积分10
刚刚
1秒前
Dr发布了新的文献求助10
2秒前
Jasper应助lc采纳,获得10
2秒前
王路飞发布了新的文献求助10
2秒前
乔垣结衣发布了新的文献求助10
3秒前
斯文败类应助超超超采纳,获得10
3秒前
5秒前
周末发布了新的文献求助10
5秒前
小月月发布了新的文献求助10
5秒前
5秒前
阳佟怀绿发布了新的文献求助10
6秒前
松松包发布了新的文献求助10
6秒前
6秒前
充电宝应助圆彰七大采纳,获得10
6秒前
6秒前
科研通AI2S应助孙传铭采纳,获得10
7秒前
夏侯初完成签到,获得积分10
7秒前
SciGPT应助Binbin采纳,获得10
7秒前
8秒前
later完成签到,获得积分20
8秒前
科研通AI5应助冷傲迎梦采纳,获得10
9秒前
WLM完成签到,获得积分10
9秒前
mermaid完成签到,获得积分10
9秒前
SciGPT应助MignonWei采纳,获得10
9秒前
陈美净发布了新的文献求助10
10秒前
10秒前
木昜发布了新的文献求助10
11秒前
欣欣子发布了新的文献求助10
11秒前
12秒前
李爱国应助马子妍采纳,获得10
13秒前
Owen应助niuma采纳,获得10
13秒前
缓慢咖啡发布了新的文献求助10
14秒前
cdercder应助sssucker采纳,获得10
14秒前
热心的飞风完成签到 ,获得积分10
15秒前
RJ123456发布了新的文献求助10
16秒前
聪聪great发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842025
求助须知:如何正确求助?哪些是违规求助? 3384185
关于积分的说明 10533034
捐赠科研通 3104519
什么是DOI,文献DOI怎么找? 1709644
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953