清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Preoperative detection of extraprostatic tumor extension in patients with primary prostate cancer utilizing [68Ga]Ga-PSMA-11 PET/MRI

医学 前列腺癌 前列腺切除术 神经组阅片室 放射科 介入放射学 磁共振成像 核医学 癌症 内科学 神经学 精神科
作者
Clemens P. Spielvogel,Jing Ning,Kilian Kluge,David Haberl,Gabriel Wasinger,Josef Yu,Holger Einspieler,László Papp,Bernhard Grubmüller,Shahrokh F. Shariat,Pascal Baltzer,Paola Clauser,Markus Hartenbach,Lukas Kenner,Marcus Hacker,Alexander Haug,Sazan Rasul
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1) 被引量:1
标识
DOI:10.1186/s13244-024-01876-5
摘要

Abstract Objectives Radical prostatectomy (RP) is a common intervention in patients with localized prostate cancer (PCa), with nerve-sparing RP recommended to reduce adverse effects on patient quality of life. Accurate pre-operative detection of extraprostatic extension (EPE) remains challenging, often leading to the application of suboptimal treatment. The aim of this study was to enhance pre-operative EPE detection through multimodal data integration using explainable machine learning (ML). Methods Patients with newly diagnosed PCa who underwent [ 68 Ga]Ga-PSMA-11 PET/MRI and subsequent RP were recruited retrospectively from two time ranges for training, cross-validation, and independent validation. The presence of EPE was measured from post-surgical histopathology and predicted using ML and pre-operative parameters, including PET/MRI-derived features, blood-based markers, histology-derived parameters, and demographic parameters. ML models were subsequently compared with conventional PET/MRI-based image readings. Results The study involved 107 patients, 59 (55%) of whom were affected by EPE according to postoperative findings for the initial training and cross-validation. The ML models demonstrated superior diagnostic performance over conventional PET/MRI image readings, with the explainable boosting machine model achieving an AUC of 0.88 (95% CI 0.87–0.89) during cross-validation and an AUC of 0.88 (95% CI 0.75–0.97) during independent validation. The ML approach integrating invasive features demonstrated better predictive capabilities for EPE compared to visual clinical read-outs (Cross-validation AUC 0.88 versus 0.71, p = 0.02). Conclusion ML based on routinely acquired clinical data can significantly improve the pre-operative detection of EPE in PCa patients, potentially enabling more accurate clinical staging and decision-making, thereby improving patient outcomes. Critical relevance statement This study demonstrates that integrating multimodal data with machine learning significantly improves the pre-operative detection of extraprostatic extension in prostate cancer patients, outperforming conventional imaging methods and potentially leading to more accurate clinical staging and better treatment decisions. Key Points Extraprostatic extension is an important indicator guiding treatment approaches. Current assessment of extraprostatic extension is difficult and lacks accuracy. Machine learning improves detection of extraprostatic extension using PSMA-PET/MRI and histopathology. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的香蕉完成签到 ,获得积分10
刚刚
端庄洪纲完成签到 ,获得积分10
9秒前
aowulan完成签到 ,获得积分10
13秒前
研友_8y2G0L完成签到,获得积分10
16秒前
21秒前
victory_liu完成签到,获得积分10
27秒前
Baboonium完成签到,获得积分10
28秒前
lily完成签到 ,获得积分10
38秒前
叶子完成签到,获得积分10
42秒前
一一一多完成签到 ,获得积分10
50秒前
Hina完成签到,获得积分0
55秒前
58秒前
MADAO完成签到 ,获得积分10
1分钟前
1分钟前
fys131415完成签到 ,获得积分10
1分钟前
futianyu完成签到 ,获得积分0
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
yyxhahaha完成签到,获得积分10
1分钟前
喜羊羊完成签到,获得积分20
1分钟前
古月菲菲完成签到,获得积分10
1分钟前
等待的航空完成签到 ,获得积分10
1分钟前
迅速千愁完成签到 ,获得积分10
2分钟前
back you up应助科研通管家采纳,获得50
2分钟前
cdercder应助科研通管家采纳,获得20
2分钟前
Bgeelyu发布了新的文献求助10
2分钟前
昏睡的眼神完成签到 ,获得积分10
2分钟前
韭黄完成签到,获得积分20
2分钟前
高贵宛海完成签到,获得积分10
2分钟前
韭菜完成签到,获得积分20
2分钟前
猫的毛完成签到 ,获得积分10
3分钟前
3分钟前
如意2023完成签到 ,获得积分10
3分钟前
3分钟前
迈克老狼完成签到 ,获得积分10
3分钟前
双眼皮跳蚤完成签到,获得积分10
3分钟前
周周南完成签到 ,获得积分10
3分钟前
可爱的函函应助hwezhu采纳,获得10
3分钟前
韭菜盒子完成签到,获得积分20
3分钟前
3分钟前
我和你完成签到 ,获得积分10
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798521
求助须知:如何正确求助?哪些是违规求助? 3344082
关于积分的说明 10318422
捐赠科研通 3060628
什么是DOI,文献DOI怎么找? 1679712
邀请新用户注册赠送积分活动 806761
科研通“疑难数据库(出版商)”最低求助积分说明 763353