Multiscale Cross-Modal Homogeneity Enhancement and Confidence-Aware Fusion for Multispectral Pedestrian Detection

计算机科学 多光谱图像 行人检测 人工智能 情态动词 特征提取 模式识别(心理学) RGB颜色模型 同质性(统计学) 传感器融合 目标检测 计算机视觉 机器学习 行人 工程类 运输工程 化学 高分子化学
作者
Ruimin Li,Jiajun Xiang,Feixiang Sun,Ye Yuan,Longwu Yuan,Shuiping Gou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 852-863 被引量:30
标识
DOI:10.1109/tmm.2023.3272471
摘要

Multispectral pedestrian detection has shown many advantages in a variety of environments, particularly poor illumination conditions, by leveraging visible-thermal modalities. However, in-depth insight into distinguishing the complementary content of multimodal data and exploring the extent of multimodal feature fusion is still lacking. In this paper, we propose a novel multispectral pedestrian detector with multiscale cross-modal homogeneity enhancement and confidence-aware feature fusion. RGB and thermal streams are constructed to extract features and generate candidate proposals. During feature extraction, multiscale cross-modal homogeneity enhancement is proposed to enhance single-modal features using the separated homogeneous features via modal interactions. Homogeneity features encode the semantic information of the scene and are extracted from the RGB-thermal pairs by employing a channel attention mechanism. Proposals from two modalities are united to obtain multimodal proposals. Then, confidence measurement fusion is proposed to achieve multispectral feature fusion in each proposal by measuring the internal confidence of each modality and the interaction confidence between modalities. In addition, a confidence transfer loss function is designed to focus more on hard-to-detect samples during training. Experimental results on two challenging datasets demonstrate that the proposed method achieves better performance compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
巴拉巴拉不完成签到,获得积分10
2秒前
2秒前
Bella完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
xuqiansd发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
陈佳欣完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
5秒前
星空完成签到,获得积分20
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737037
求助须知:如何正确求助?哪些是违规求助? 5370241
关于积分的说明 15334617
捐赠科研通 4880797
什么是DOI,文献DOI怎么找? 2622998
邀请新用户注册赠送积分活动 1571878
关于科研通互助平台的介绍 1528721