Enhanced Insights into Effluent Prediction in Wastewater Treatment Plants: Comprehensive Deep Learning Model Explanation Based on SHAP

流出物 超参数 计算机科学 特征(语言学) 人工智能 机器学习 污水处理 滞后 比例(比率) 废水 环境科学 环境工程 计算机网络 语言学 哲学 物理 量子力学
作者
Ruojia Li,Kuanliang Feng,Tong An,Peijin Cheng,Lecheng Wei,Zihao Zhao,Xiangyang Xu,Liang Zhu
出处
期刊:ACS ES&T water [American Chemical Society]
卷期号:4 (4): 1904-1915 被引量:15
标识
DOI:10.1021/acsestwater.4c00040
摘要

Models are increasingly being utilized to improve the understanding and operation of wastewater treatment plants (WWTPs) in the face of escalating water resource challenges. Abundant operational data provide extensive opportunities for the development of machine learning (ML) and deep learning (DL) models. However, the coupling and time lag among the features exacerbate the black-box nature of such models, hindering their application in WWTPs. In this study, we construct a DL model using a long short-term memory (LSTM) algorithm capable of accurately predicting the effluent quality in a full-scale WWTP with finely tuned hyperparameters and rationally chosen input features. Comprehensive model explanation based on Shapley additive explanations (SHAP) is implemented to clarify the contributions of multivariate time series (MTS) inputs to the predicted results in terms of feature and time dimensions. The LSTM models exhibit excellent accuracy (R2 of 0.96, 0.95, and 0.76 and MAPE of 5.49, 7.17, and 13.37%, respectively) in predicting effluent chemical oxygen demand (COD), total phosphorus (TP), and total nitrogen (TN) better than other baseline ML models. The SHAP results quantify what input features are most important when they exert influence and how they impact results. The analysis from the temporal dimension further explains the time lag characteristics of the wastewater treatment process and justifies the introduction of MTS. Compared to correlation analysis and without feature engineering, the feature selection method by SHAP significantly enhances the predictive accuracy. The combinations of input features are adjusted based on the Shapley values, and features with strong interactions and significant contributions to the model output are identified. This is a novel attempt to construct a WWTP model based on LSTM with both excellent accuracy and explainability and to clarify the influence of MTS inputs on prediction results. This work shows the potential of applying DL to model WWTPs and enhances their performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Q9发布了新的文献求助10
1秒前
DO发布了新的文献求助10
2秒前
科研通AI6应助小羊佳佳采纳,获得10
2秒前
LYJ完成签到,获得积分10
4秒前
Mengfanrong完成签到,获得积分20
5秒前
fmr完成签到,获得积分20
5秒前
田様应助科研爱好者采纳,获得10
6秒前
nn发布了新的文献求助10
6秒前
刀刀发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
柏林寒冬应助倔驴采纳,获得10
12秒前
12秒前
鼻揩了转去应助师德采纳,获得10
12秒前
Bottle完成签到,获得积分10
12秒前
呼延含双发布了新的文献求助10
13秒前
Shine完成签到,获得积分10
14秒前
14秒前
今后应助舒心幼萱采纳,获得20
15秒前
共享精神应助王雨晨采纳,获得10
15秒前
CompJIN发布了新的文献求助10
16秒前
16秒前
zhouzehua1003发布了新的文献求助10
17秒前
jimmyyyyyy发布了新的文献求助10
18秒前
mi完成签到,获得积分10
18秒前
18秒前
030213lzy完成签到,获得积分10
19秒前
高兴吐司发布了新的文献求助10
19秒前
dajiejie发布了新的文献求助10
19秒前
21秒前
leec完成签到,获得积分10
21秒前
21秒前
21秒前
24秒前
jimmyyyyyy完成签到,获得积分10
24秒前
25秒前
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248080
求助须知:如何正确求助?哪些是违规求助? 3781205
关于积分的说明 11871436
捐赠科研通 3434064
什么是DOI,文献DOI怎么找? 1884767
邀请新用户注册赠送积分活动 936342
科研通“疑难数据库(出版商)”最低求助积分说明 842268