锡
电解质
金属锂
材料科学
锂(药物)
电化学
容量损失
阴极
金属
合金
储能
电流密度
化学工程
纳米技术
冶金
复合材料
化学
电极
物理化学
工程类
功率(物理)
内分泌学
物理
医学
量子力学
作者
Akila C. Thenuwara,Sooraj Narayan,Eric L. Thompson,Mark A. Quesada,Thomas F. Malkowski,Kenneth D. Parrotte,Kathryn E. Lostracco,Lori A. Seeley,Melroy R. Borges,Zhen Song,Aram Rezikyan,Marissa Labant,Xingzhong Wu,Michael E. Badding,Kevin G. Gallagher
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-04-26
卷期号:9 (5): 2401-2409
被引量:4
标识
DOI:10.1021/acsenergylett.4c00735
摘要
Lithium–metal batteries with solid electrolyte separators promise improvements in energy density, fast charge capability, and safety. However, the lack of control of the solid electrolyte–lithium–metal interface continues to impede development. Interlayers between lithium–metal and the solid electrolyte are reported to improve performance but have limitations due to stability, rate limitations, and the use of undesirable elements (e.g., Ag, Au). Here, we show that a thin layer of the abundant metal Sn provides the required stability and transport properties to enable commercially relevant current densities (5 mA cm–2) and external pressures (0.3 MPa) at room temperature in Li7La3Zr7O12 (LLZO) hybrid cells. Moreover, these Sn interlayer full cells constructed with NMC cathodes (areal capacity of ∼2.5 mAh cm–2) show no capacity loss for over 500 cycles under symmetric C/3 cycling. Both the interlayer phase behavior and Li transport properties are proposed to underpin the performance of metal-alloy interlayers as indicated by electrochemical and in situ and ex situ characterization techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI