On-NAS: On-Device Neural Architecture Search on Memory-Constrained Intelligent Embedded Systems

计算机科学 建筑 内存体系结构 嵌入式系统 计算机体系结构 计算机硬件 艺术 视觉艺术
作者
Bosung Kim,Seulki Lee
标识
DOI:10.1145/3625687.3625814
摘要

We introduce On-NAS, a memory-efficient on-device neural architecture search (NAS) solution, that enables memory-constrained embedded devices to find the best deep model architecture and train it on the device. Based on the cell-based differentiable NAS, it drastically curtails the massive memory requirement of architecture search, one of the major bottlenecks in realizing NAS on embedded devices. On-NAS first pre-trains a basic architecture block, called meta cell, by combining n cells into a single condensed cell via two-fold meta-learning, which can flexibly evolve to various architectures, saving the device storage space n times. Then, the offline-learned meta cell is loaded onto the device and unfolded to perform online on-device NAS via 1) expectation-based operation and edge pair search, enabling memory-efficient partial architecture search by reducing the required memory up to k and m/4 times, respectively, given k candidate operations and m nodes in a cell, and 2) step-by-step back-propagation that saves the memory usage of the backward pass of the n-cell architecture up to n times. To the best of our knowledge, On-NAS is the first standalone NAS and training solution fully operable on embedded devices with limited memory. Our experiment results show that On-NAS effectively identifies optimal architectures and trains it on the device, on par with GPU-based NAS in both few-shot and full-task learning settings, e.g., even 1.3% higher accuracy on miniImageNet, while reducing the run-time memory and storage usage up to 20x and 4x, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Andy发布了新的文献求助10
3秒前
王子完成签到,获得积分10
3秒前
皮皮发布了新的文献求助10
3秒前
半盏完成签到,获得积分10
5秒前
务实的以松完成签到,获得积分10
5秒前
6秒前
sy发布了新的文献求助10
7秒前
溴氧铋完成签到 ,获得积分10
7秒前
10秒前
小透明完成签到 ,获得积分10
11秒前
13秒前
13秒前
跳跃若风发布了新的文献求助10
15秒前
16秒前
saf0852完成签到,获得积分10
18秒前
SciGPT应助冰糖葫芦娃采纳,获得10
18秒前
毛毛完成签到 ,获得积分10
19秒前
21秒前
zxt完成签到,获得积分10
23秒前
liyuqi61148完成签到,获得积分10
23秒前
李思超发布了新的文献求助240
27秒前
陶醉的海冬完成签到 ,获得积分10
30秒前
30秒前
小蘑菇应助yy采纳,获得10
31秒前
33秒前
35秒前
37秒前
跳跃若风完成签到,获得积分10
37秒前
where发布了新的文献求助10
39秒前
醒醒发布了新的文献求助10
41秒前
42秒前
CodeCraft应助ye采纳,获得10
42秒前
43秒前
tl完成签到,获得积分10
46秒前
爆米花应助最爱吃火锅采纳,获得30
47秒前
49秒前
QR发布了新的文献求助10
50秒前
青柠关注了科研通微信公众号
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778058
求助须知:如何正确求助?哪些是违规求助? 3323749
关于积分的说明 10215625
捐赠科研通 3038921
什么是DOI,文献DOI怎么找? 1667711
邀请新用户注册赠送积分活动 798361
科研通“疑难数据库(出版商)”最低求助积分说明 758339