已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15 被引量:13
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张佳伟完成签到,获得积分10
1秒前
1秒前
天真的邴完成签到 ,获得积分10
1秒前
小王发布了新的文献求助10
1秒前
2秒前
清樾完成签到 ,获得积分10
4秒前
4秒前
子瑜刘发布了新的文献求助10
5秒前
苗雪阳发布了新的文献求助10
6秒前
7秒前
小花排草应助yejq采纳,获得10
7秒前
小花排草应助yejq采纳,获得10
7秒前
小花排草应助yejq采纳,获得10
7秒前
8秒前
Doctor_Lee30发布了新的文献求助10
9秒前
10秒前
认真的傲柏完成签到,获得积分10
10秒前
10秒前
11秒前
电容器完成签到,获得积分10
11秒前
跳跃的迎荷完成签到 ,获得积分10
12秒前
归仔发布了新的文献求助10
12秒前
paixingxing发布了新的文献求助30
14秒前
16秒前
xiayil发布了新的文献求助10
16秒前
大虾发布了新的文献求助10
17秒前
19秒前
XIAOMEIMA发布了新的文献求助10
21秒前
toniki发布了新的文献求助10
22秒前
自强不息完成签到 ,获得积分10
25秒前
顾末完成签到,获得积分10
26秒前
大虾完成签到,获得积分10
26秒前
刻苦慕晴完成签到 ,获得积分10
27秒前
领导范儿应助xiayil采纳,获得10
28秒前
Pooh完成签到 ,获得积分10
29秒前
32秒前
领导范儿应助张emo采纳,获得10
33秒前
35秒前
垚贺垚完成签到,获得积分10
37秒前
38秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4161188
求助须知:如何正确求助?哪些是违规求助? 3696760
关于积分的说明 11673978
捐赠科研通 3388255
什么是DOI,文献DOI怎么找? 1857879
邀请新用户注册赠送积分活动 918807
科研通“疑难数据库(出版商)”最低求助积分说明 831691