Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:15: 1343140-1343140 被引量:29
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助娜娜采纳,获得10
刚刚
lily发布了新的文献求助10
3秒前
小王姐姐完成签到,获得积分10
4秒前
4秒前
JamesPei应助gyf采纳,获得10
4秒前
量子星尘发布了新的文献求助10
6秒前
6666应助隔壁的邻家小兴采纳,获得10
6秒前
6秒前
7秒前
净心完成签到 ,获得积分10
8秒前
8秒前
10秒前
开心的眼睛完成签到,获得积分10
10秒前
旅人完成签到 ,获得积分10
13秒前
13秒前
ad钙发布了新的文献求助10
14秒前
大模型应助踏实的老四采纳,获得10
16秒前
16秒前
丘比特应助lin采纳,获得10
17秒前
君衡完成签到 ,获得积分10
18秒前
CodeCraft应助顶级科学家采纳,获得10
18秒前
zh发布了新的文献求助10
18秒前
yuanquaner完成签到,获得积分10
18秒前
oo完成签到,获得积分10
20秒前
20秒前
20秒前
20秒前
俞骁俞骁发布了新的文献求助10
22秒前
Twonej举报Mol求助涉嫌违规
22秒前
科研通AI6.1应助贺烨霖采纳,获得10
22秒前
22秒前
David应助乔木木采纳,获得10
22秒前
Wenshan发布了新的文献求助10
24秒前
张可欣发布了新的文献求助10
25秒前
贾小云完成签到 ,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
猕猴桃完成签到 ,获得积分10
26秒前
笑对人生发布了新的文献求助10
26秒前
充电宝应助陈chen采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737113
求助须知:如何正确求助?哪些是违规求助? 5371030
关于积分的说明 15334920
捐赠科研通 4880851
什么是DOI,文献DOI怎么找? 2623064
邀请新用户注册赠送积分活动 1571894
关于科研通互助平台的介绍 1528752